Basic Fundamentals in Hearing Science

Tony L. Sahley, PhD, CCC-A Frank E. Musiek, PhD, CCC-A

JBL INC.

Contents

Foreword by	James A. Kaltenbach, PhD	xiii
Preface		xv
Acknowledg	ments	xvii
Chapter 1.	What Is Science?	1
	What Is Hearing Science?	2
	The Roots of Science	2
	The Definition of Science	2
	The Structure and Philosophy of Science	3
	The Scientific Method: Philosophy and Practice	4
	1A. Asking a Scientific Question. The Doctrine of Empiricism	5
	2A. Formulating a Hypothesis: Identifying Relevant Variables	7
	3A. Designing an Experimental Method: Operationally Defining Variables	9
	1B. Asking Scientific Questions: Formulating Predictions Based on a Theoretical Model and the	15
	Role of Deductive Logic (Deduction)	1(
	2B. Formulating Theory-Driven Hypotheses	10
	3B. Designing Experimental Methods: Operationally Defining Theory Constructs	1/
	4. Reporting the Results: Hypothesis Testing	17
	5A. Discussing and Interpreting the Results:	18
	Evaluating Single Hypothesis-Driven Research	
	5B. Discussing and Interpreting the Results: Evaluating Theory-Driven Research	18
	The Scientific Method: Structure of a Scientific Manuscript	23
	Chapter Summary	31
	Chapter 1 Questions	32
	References	33
Chapter 2.	Measurement	35
	Measurement	36
	Measurement Levels (Scales of Measurement)	36
	Categorical Versus Continuous Variables	36
	Nominal-Level Measurement	37
	Ordinal-Level Measurement	39
	Interval-Level Measurement	40
	Ratio-Level Measurement	43

	Exponential Notation and Scientific Notation	45
	Exponents	45
	Scientific Notation	48
	Logarithms (Logs)	49
	Exponents/Logarithms of Whole Number	51
	Integers of 10	
	Nonwhole Number Exponents/Logarithms	52
	Measurement Systems	53
	The Importance of Standard Units of Measurement	53
	Proportionality	58
	Direct Proportionality	58
	Inverse Proportionality	59
	Chapter Summary	59
	Chapter 2 Questions	60
	References	60
Chapter 3.	Basic Terminology for Hearing Science	63
-	The Importance and Relevance of Physics to Hearing	64
	Science	
	Physics and Energy	65
	Physics and Motion: An Overview	71
	Physics and Motion: Length, Mass, and Time	75
	Derivatives of Length	76
	Displacement (Motion) of a Pendulum	78
	Elasticity and the Restorative Force of Elasticity	85
	Chapter Summary	104
	Chapter 3 Questions	106
	References	106
Chapter 4.	Application of the Basic Principles in	109
•	Hearing Science	
	A Brief Historical Account of Motion	110
	Galileo Galilei (1564–1642)	110
	Isaac Newton (1642–1727)	112
	Kinematics and Dynamics	114
	Inertia	114
	Mass, Inertia, and Newton's First Law of Motion	115
	Force	116
	Mass, Acceleration, and Newton's Second Law	117
	of Motion	
	A Closer Examination of Force—I	118
	A Closer Examination of Force—II	122
	MKS and CGS Metric Units Compared: Force	123
	MKS and CGS Metric Units Compared: Work	124
	*	

	Force and Area: Pressure	125
	Power	128
	Making Sense of Power	128
	Work and Energy Revisited: Types of Energy	130
	Potential Energy	131
	Kinetic Energy	138
	Momentum	142
	Collisions	143
	Changes in Energy, Force, and Momentum During Harmonic Motion	148
	Scalar and Vector Quantities	152
	Chapter Summary	152
	Chapter 4 Questions	154
	References	154
Chapter 5.	Harmonic Motion	157
	What Is Harmonic Motion?	159
	What Is Sinusoidal Motion?	159
	Simplified Trigonometry	159
	Simplified Trigonometry and the Unit Circle	161
	Phase Relations Between Displacement, Velocity, and Acceleration During Harmonic Motion	173
	Peak Amplitude of a Sine Wave	174
	Peak-to-Peak Amplitude of a Sine Wave	175
	Compression and Rarefaction of a Sine Wave	176
	Compression, Rarefaction, and Equilibrium	177
	Root-Mean-Square (RMS) Amplitude	178
	What Are Rad <mark>ia</mark> ns?	187
	Mass and Stiffness in Opposition	193
	The Role of Mass	193
	The Role of Stiffness	193
	Relation to Sound	194
	Frequency and Period Revisited	194
	Hertz	194
	Mass, Stiffness, Frequency, and Period	199
	Free Vibration and Resonance	200
	Angular Velocity/Angular Frequency	201
	Fundamental Frequency	201
	Friction, Damping, and Resistance	202
	Forced Vibration	205
	Impedance: Frictional Resistance and Reactance	209
	Chapter Summary	217
	Chapter 5 Questions	219
	References	222

Chapter 6.	The Measurement of Sound	223
-	Sound Defined	226
	Work, Power, and the Watt Revisited	230
	Acoustic Intensity (I)	231
	Inverse Square Law	233
	Quantifying Acoustic Intensity	236
	Newtons (N), Dynes, and Pressure Revisited	237
	Quantifying Pressure	237
	The Relationship Between Intensity (I) and Pressure (P)	239
	Threshold and Upper Limit Values for Intensity and Pressure	239
	Acoustic Intensity Level (IL) and Sound Pressure Level (SPL)	239
	Historical Overview: The Bel	240
	Bel-Intensity Level (IL)	242
	Evaluation of the Bel	245
	The Decibel (dB)	245
	Decibels of Intensity Level (dB IL)	246
	Bel-Sound Pressure Level (SPL)	247
	Relationship Between Intensity (I) and Pressure (P) Revisited	250
	Decibels of Sound Pressure Level (dB SPL)	251
	The Concept of Zero Decibels (0 dB)	256
	The Doubling or Halving of Signal Power or Pressure	257
	Decibel Problems	259
	Sound Level Meters (SLMs)	262
	SLM Weighting Networks (Filters)	263
	Octave-Band Analyses	265
	Determining Cut-Off Frequencies for Octave and Third-Octave-Band Filters	267
	SLM Calibration	269
	Types of SLMs	269
	Microphones	270
	Types of Microphones	271
	Pressure Types of Microphones	272
	The Velocity Type of Microphone	277
	Microphone Directionality	278
	The Sound-Field	279
	Types of Sound-Fields	280
	Types of Sounds I: Periodic Waveforms	286
	Simple Periodic Sinusoidal Waveforms: Pure Tones	286
	Complex Waveforms	294
	Types of Sounds II: (Complex) Aperiodic Waveforms	307
	(Complex) Aperiodic Transient Signals	308
	(Complex) Aperiodic Continuous Signals	321

	Modulated Signals	331
	Warble Tones	334
	The Spectral Analysis and the Amplitude Spectrum	334
	The Line Spectrum	335
	The Continuous Spectrum	340
	The Phase Spectrum	341
	Spectral Shaping: Filters	343
	Types of Filters I: Ideal Filters	344
	Types of Filters II: Real Filters	346
	Filters in Personal Amplification	356
	Linear Systems	360
	Linear Distortion	362
	Nonlinear Distortion	363
	Amplitude Distortion	363
	Nonlinear Transient and Imaging Distortion	366
	Intermodulation Distortion: Combination Tones	366
	Chapter Summary	369
	Chapter 6 Questions	372
	References	373
Chapter 7.	Acoustics	375
1	Acoustics Defined	376
	Wavelength	377
	Sound Transmission and Wavelength	380
	Types of Waveform Motion	381
	Transverse Wave Motion	381
	Longitudinal Wave Motion	384
	The Behavior of Sound in a Sound-Field	386
	Sound Transmission and/or Reflection	386
	Sound Transmission and/or Absorption	389
	Sound Transmission and Diffraction	390
	Sound Transmission and Sound-Shadow Effects	397
	The Doppler-Effect	399
	Sound Transmission and Shock Waves	404
	Sound Transmission and Refraction	406
	Sound Transmission and Interference	410
	Sound-Field Calibration	422
	Resonators	424
	Resonances of Air-Filled Tubes	426
	Chapter Summary	442
	Chapter 7 Questions	446
	References	446
Chapter 8.	Psychoacoustics	449
	Psychophysics	451

	Developeration	1.51
	PSychologoustics	451
	Infeshold Revisited	452
	Absolute Infeshold Revisited	455
	The Inreshold of Audibility	454
	The Minimum Audibility Curve (MAC)	450
	The Threshold of Audibility: Relationship to the Pure	460
	Tone Audiogram	164
	The Audiometer	461
	The Pure Tone Audiogram	463
	Loudness Scaling	467
	The Phon: Phons of Loudness Level	469
	Differential Threshold	472
	The Loudness of Complex Signals	480
	Pitch	481
	Signal Duration and Pitch	481
	Differential Thresholds for Pitch	482
	Intensity Level and Pitch	483
	The Mel: Mels of Pitch Perception	485
	The Pitch of Complex Signals	487
	The Critical Band	490
	Loudness Summation and the Critical Band	492
	Pitch and the Critical Band	494
	Masking	495
	Masking and the Critical Band	497
	The Equivalent Rectangular Bandwidth (ERB)	498
	The Critical Ratio	500
	Beats, Flutter, Roughness, and the Critical Band	502
	The Temporal Aspects of Hearing	503
	Temporal Summation	504
	Temporal Masking	504
	Auditory Adaptation and Auditory Fatigue	506
	Binaural Hearing	510
	Binaural Summation	511
	Binaural Fusion	511
	Binaural Sound Localization	512
	Monaural Sound Localization	518
	Binaural Sound Lateralization	519
	Chapter Summary	520
	Chapter 8 Questions	527
	References	530
Chapter 9.	Nervous System Terminology: The Structure and	535
	Function of Neurons and the Cranial Nerves	
	The Neuron	537
	Structure and Function of the Neuron	539

	Generation of the Action Potential	545
	Types of Neurons	551
	The Peripheral Nervous System (PNS)	554
	The Cranial Nerves	554
	Chapter Summary	590
	Bibliography	593
Chapter 10.	Anatomy and Physiology of Hearing	595
	Introduction	595
	The Peripheral Auditory System	596
	The Temporal Bone	596
	The Outer Ear	598
	The Middle Ear (Tympanum)	600
	The Cochlea	606
	The Auditory Nerve	615
	The Central Auditory Nervous System	617
	The Cochlear Nucleus	619
	The Superior Olivary Complex	620
	The Lateral Lemniscus	621
	Inferior Colliculus	621
	The Medial Geniculate Body	622
	Auditory Cortex and Subcortex	623
	The Corpus Callosum	626
	The Efferent System	628
	Structure	628
	Function	628
	Vascular Supply for the Auditory System	629
	The Peripheral System	629
	The Central System	630
	Chapter Summary	630
	References	631
Appendix A.	Exponential and Scientific Notation	635
	Section A1. Conversion From Conventional to Exponential Notation	635
	Numbers That Are Exact Multiples of Ten	635
	Section A2. Operating Principles in the Use of	636
	Exponents	
	I. Multiplication	636
	II. Exponentiation	637
	III. Division	637
	IV. Combining Multiple Exponents	638
	Section A3. Conversion From Conventional to Scientific Notation	638
	Section A4. Working With Scientific Notation	640

	I. Multiplication With Scientific Notation	640
	II. Division With Scientific Notation	641
	References	642
Appendix B.	Logarithms	643
	Section B1. The Characteristic and the Mantissa	643
	Section B2. Working With Logarithms	644
	Rules in the Use of Logarithms	644
	Section B3. Antilogarithms (Antilogs)	647
	Rules for Computations With Logarithms	650
	References	651
Appendix C.	Exponents With Metric Prefixes	653

Index

655

Foreword

Hearing science is a multidisciplinary subject that is rooted in a diverse array of fields, including physics, engineering, anatomy, physiology, cell biology, and psychology. Bringing together the vast reservoir of knowledge from all these disciplines into a single textbook that does justice to the field's complexity without alienating its readers is not a simple task and few have done so effectively. Sahley and Musiek are among the exceptions. Drawing on their many years of combined teach ing and research experience/expertise in clinical audiology, hearing science, and auditory neuropharmacology, as well as their combined expertise in general medical physiology, neuroanatomy, and neurophysiology, they have done a masterful job of making this complex body of knowledge approachable and straightforward. The book is organized into 10 chapters, each describing a different core aspect of hearing science. The book's first two chapters are introductory to students new to science, providing an overview of what science is and summarizing basic concepts, quantities, and measurement systems that are used to describe and characterize the physical world. These chapters set the stage for Chapters 3 and 4, focusing on the terminology of hearing science and the application of its basic principles. Chapters 5 and 6 describe harmonic motion and all the properties of sound waves and how they are measured, while Chapter 7 journeys into the domain of acoustics, examining the propagation of sound

waves through space and the complex interactions that shape the sound field. This provides a perfect segue into Chapter 8, summarizing the principles and concepts of psychoacoustics, the science of auditory perception. This chapter deals with what we hear and how the psychophysical attributes of sound vary with changes in the physical parameters of auditory stimulation. The last two chapters focus on the biology of hearing, beginning with a summary of terminology used to describe the various components and principles of nervous system organization (Chapter 9) and ending with a review of the anatomy and physiology of the three subdivisions of the ear (Chapter 10). Each of these chapters is characterized by a well-organized text that is prefaced by an inspiring quote and a list of terms to be defined, and each ends with a clear and succinct summary of concepts and principles introduced. Those chapters with a more quantitative bent also include numerous questions and/or problems to encourage students to put their knowledge to work or think beyond the boundaries of the book's pages. The text is written with meticulous and thorough attention to detail and accuracy. This is especially apparent with regard to the formulas and tables provided for the computations of the Bel, decibel, and RMS amplitude. An additional feature that adds to the attractiveness and flair of the book is the frequent reference to historic discoveries and to those who made them. Concepts presented in the

text are beautifully complemented by illustrations, graphs, and equations. This is a book I wish I had had when I was a student, and I believe it will become a first choice textbook among undergraduate and graduate students. It will provide quick answers to questions, both simple and complex, and will provide ever-deepening insights into hearing science when knowledge of details is the goal.

> —James A. Kaltenbach, PhD Director of Otology Research The Cleveland Clinic

Chapter 4

Application of the Basic Principles in Hearing Science

In a letter to Robert Hooke dated February 5, 1675, Newton wrote, "If I have seen further than others it is by standing upon the shoulders of giants" (Gianopoulos, 2006, p. 49; Hawking, 2002, p. 725). Perhaps Newton should have said, "I used the shoulders of giants as a springboard."

Hawking, 2002, p. XIII

Alphabetized Listing of Key Terms Discussed in Chapter 4			
acceleration	force	joule	
action	friction	Joule, James Prescott	
atmospheric pressure	frictional resistance	kinematics	
bar	Galilei, Galileo	kinetic energy	
CGS metric system	geocentric	law of inertia	
collisions	gravitational potential	laws of motion,	
compliance	energy	Newton's	
cycle	gravity	Leibniz, Gottfried	
displacement	Halley, Edmond	Wilhelm	
dynamics	heliocentric	mass	
dyne	Hooke's law	mechanics	
Einstein, Albert	horsepower	Medicean stars	
elastic collision	Huygens, Christiaan	microbar	
energy	inertia	MKS metric system	
erg	inertia, law of	momentum	
first law of motion,	Inquisition	motion	
Newton's	interactive forces	natural motion	

net force	rate	stretching force
newton (of force)	reaction	(tension)
Newton, Isaac	recoil	support force
one atmosphere of	reflecting telescope	telescope, Newtonian
pressure		third law of motion,
pascal (Pa)	refracting telescope	Newton's
Pascal, Blaise	restorative force	time
pendulum	Rome, Holy Office of	vector quantity
peripatetics	Rules of Reasoning,	vectors
Pope, Alexander	Newton's	velocity
potential energy	scalar quantity	violent motion
pounds per square	scalars	watt
inch (psi)	second law of motion,	Watt, James
power	Newton's	weight
pressure	Slinky	work
Principia	spring-mass system	Wren, Christopher

A Brief Historical Account of Motion

The connection between vibratory motion and sound was introduced in the previous chapter. Historically, the study of motion, known also in physics as mechanics, has occupied the interests of scholars that have originated from the time of the ancient philosopher Aristotle (384-322 BC), up to and beyond the era of the eminent Albert Einstein (1879–1955). Today, a thorough understanding of motion remains an essential component within the study of contemporary hearing science. What follows is a brief historical account of Galileo Galilei (1564-1642) and Isaac Newton (1642-1727), both of whom

made significant contributions that advanced the study of motion, and of hearing science.

Galileo Galilei (1564–1642)

Recall the image of Galileo (see Portrait 1–1) that was presented in Chapter 1. Galileo was born in Pisa, Italy, and became the foremost scientist of the early 17th century. He studied medicine and the philosophy of Aristotle at the University of Pisa from 1581 to 1584. At the age of 20, Galileo discovered the properties of the pendulum. As indicated in the previous chapter, Galileo demonstrated that the rate of harmonic motion of a pendulum is inversely dependent on its length. This discovery made accurate time-keeping possible. It is not known whether Galileo actually built a pendulum clock, though Christiaan Huygens (1629–1695) did build one more than ten years after Galileo's death (Giancoli, 2005).

In 1585, Galileo abandoned the study of medicine for research in mathematics (Hawking, 2002). His approach to science included idealization and simplification, the quantification of theories (operationism), the development of theories (induction) with testable hypotheses (deduction), and the completion of empirical investigations in order to test his predictions (or simply, hypothesis testing). For these reasons, Galileo is often called the "father of modern experimental science" (Hawking, 2002). In 1589 at the age of 25, Galileo became a professor of mathematics at the University of Pisa. From his experiments with falling and rolling objects, he developed the concept of acceleration. He demonstrated that for a given location on the earth, solid objects with different amounts of mass would fall to the earth at roughly equivalent speeds or with constant acceleration, provided the air resistance was equivalent, or zero, as in a vacuum. Galileo, however, could not explain why. This explanation would require the genius of Isaac Newton. Galileo additionally determined that objects forcibly set into motion by a push or a pull on a horizontal surface eventually come to rest due to a force, called "friction" and not "nature," as Aristotle had originally asserted. He also reasoned that if friction were completely removed, an object forcibly set into motion would continue to move indefinitely in a straight line with constant velocity, provided that no other

force acted to alter its motion. Galileo coined the term "inertia," and inertia became central to Galileo's laws of motion. Hence, according to Galileo, the constant horizontal motion of an object was no less natural than the condition of rest. This way of thinking was in direct contradiction to the popularly held metaphysical philosophies of Aristotle. Hence, Galileo discredited the contemporarily held Aristotelian concepts of nature and motion and this led to the creation of a new vision of the universe (Gianopoulos, 2006). From his prudent observations and experimentation, Galileo helped advance a new worldview in which the affairs of the mind were separate from the affairs of matter, In turn, advocates of Aristotelian thinking (called Peripatetics) eventually forced Galileo to leave the University of Pisa. In 1592, Galileo became professor of mathematics at the University of Padua where he made significant discoveries in astronomy (Gianopoulos, 2006). Galileo built a refracting telescope that was an improvement on a design first proposed in 1610 by Hans Lipperhey (Hawking, 2002). His conclusions, based on his earlier observation in 1604 of a supernova, and his telescopic observations in 1610 of the moon, Jupiter, and the galaxy, were again in direct opposition to the prevailing philosophy of an unchanging universe, as put forth by Aristotle (Hawking, 2002).

In 1610 Galileo discovered and named the four brightest moons of Jupiter, which he called the Medicean stars (Hawking, 2002). Later he detected the phases of Venus, and the sunspots of the Sun. In total, Galileo's scientific conclusions gave credence to a heliocentric Copernican view of the cosmos (Gianopoulos, 2006). By displacing the earth from the center of the universe, he was able to conclude that the earth and the heavens both operated under similar laws (Hawking, 2002). He attacked, with empirical evidence, the belief that mechanics and cosmology were separate subject matters. In 1616, officials of the Church, together with other Peripatetics, warned Galileo to abandon his belief in the Copernican view of the cosmos. In 1632, the Holy Office of Rome (The Inquisition) imprisoned Galileo for his published writings and confined him for an indefinite time to his villa in Florence (Gianopoulos, 2006; Hawking, 2002). Galileo remained there under house arrest in Tuscany, where he later died in 1642 (Giancoli, 2005; Hewitt, 2010).

Isaac Newton (1642-1727)

Newton was born in Woolsthorpe, Lincolnshire, England, in the same year that Galileo died in Florence, while under house arrest (Gianopoulos, 2006; Hawking, 2002) (Portrait 4-1). At the age of 11, while attending grammar school, Newton discovered his particular talent for building clocks, sundials, and a working model of a windmill that was powered by a running mouse (Hawking, 2002). Newton led a rather solitary life (Gianopoulos, 2006), and much of Newton's adulthood was filled with episodes of harsh, vindictive attacks, not only against perceived enemies, but against friends and family as well. It has been speculated that Newton's achievements were the result of his vindictive obsessions and arrogance (Hawking, 2002). Beginning at the age of 19, and from 1661 to 1665, Newton attended Trinity

Portrait 4–1. Isaac Newton (1642–1727). "Nature and nature's laws lay hid at night: God said, 'Let Newton be! And all was light." Written by Alexander Pope to describe Newton's gift to humanity (Hawking, 2002, p. 732). Printed with permission. Wikimedia Commons, public domain.

College, which was part of Cambridge University (Gianopoulos, 2006). While at Cambridge, Newton studied the philosophy of Aristotle and Descartes, the science of Thomas Hobbs and Robert Boyle, the mechanics of Copernicus, the astronomy of Galileo, and the optics of Kepler (Hawking, 2002). While Newtonian mechanics has guided astronomers and scientists in their search for knowledge for more than 200 years, it was Newton's work with prisms and light (1704) (Portrait 4–2) that initially brought him fame (Gianopoulos, 2006). Newton was the first to use a prism to break a ray of light into a spectrum of colors. He then used a second prism to combine the colors back into white light (Stutz, 2006).

Portrait 4–2. Newton's mathematical principles of natural philosophy. Printed with permission. Wikimedia Commons, public domain.

Newton was a rationalist whose emphasis was often based on defining true mathematical notions, independent of observation (Gianopoulos, 2006). The British physicist Robert Hooke, the English astronomer Edmond Halley, the Dutch mathematician Christiaan Huygens, and the architect Christopher Wren were all contemporaries of Isaac Newton (Hawking, 2002). At the age of 23 (1665) Newton formulated his universal law of gravitation and later, from 1666 to 1667, developed the binomial theorem. The law of universal gravitation stated that all matter is mutually attracted with a force directly proportional to the product of their (individual) masses, and inversely proportional to the square of the distance between them. He was also able to use his inverse square law theory of

gravity to explain the elliptical motions of the planets and the rising and falling of the tides (Gianopoulos, 2006; Hawking, 2002). Newton invented the calculus (1666), though the differential and integral calculus developed by Gottfried Wilhelm Leibniz (1646–1716) in roughly the same period, is more commonly used by mathematicians and engineers. Nevertheless, Newton is still considered to be the father of infinitesimal calculus, mechanics and planetary motion, and theories of light and color. He secured his place in history by formulating the law of gravitational force and defining his three laws of motion (Hawking, 2002).

Newton, like Galileo, adhered to the heliocentric-Copernican view of the cosmos, and he viewed changes in the motion of a mass as originating from sources external to the mass, rather than representing internal activity within the mass (Hawking, 2002). In 1668, Newton developed (Stutz, 2006), constructed, and later made revisions (1671-1672) to the first reflecting telescope (Gianopoulos, 2006). Newton's original telescope was only 6 inches long and is still on display at the library of the Royal Society of London. His invention was the prototype for the design that later came to be called the "Newtonian telescope," a term that is practically synonymous with the reflecting telescope (Stutz, 2006). Newton became a mathematics professor at Cambridge in 1669 and was appointed the Lucasian Professor of Mathematics at Trinity College (in Cambridge) which is the same position held today by the renowned physicist Stephen Hawking (Gianopoulos, 2006). Extending the work of Galileo, Newton formulated his three laws of motion in his great work, the Principia