PRECLINICAL SPEECH SCIENCE

PRECLINICAL SPEECH SCIENCE

Anatomy, Physiology, Acoustics, and Perception

THIRD EDITION

Thomas J. Hixon Gary Weismer Jeannette D. Hoit

5521 Ruffin Road San Diego, CA 92123

e-mail: info@pluralpublishing.com website: http://www.pluralpublishing.com

Copyright © 2020 by Plural Publishing, Inc.

Typeset in 10/12 Palatino by Flanagan's Publishing Services, Inc. Printed in South Korea through Four Colour Print Group

All rights, including that of translation, reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, including photocopying, recording, taping, Web distribution, or information storage and retrieval systems without the prior written consent of the publisher.

For permission to use material from this text, contact us by Telephone: (866) 758-7251 Fax: (888) 758-7255 e-mail: permissions@pluralpublishing.com

Every attempt has been made to contact the copyright holders for material originally printed in another source. If any have been inadvertently overlooked, the publishers will gladly make the necessary arrangements at the first opportunity.

Library of Congress Cataloging-in-Publication Data

Names: Hixon, Thomas J., 1940-2009, author. | Weismer, Gary, author. | Hoit, Jeannette D. (Jeannette Dee), 1954- author.
Title: Preclinical speech science : anatomy, physiology, acoustics, and perception / Thomas J. Hixon, Gary Weismer, Jeannette D. Hoit.
Description: Third edition. | San Diego, CA : Plural Publishing, [2020] | Includes bibliographical references and index.
Identifiers: LCCN 2018018596 | ISBN 9781635500615 (alk. paper) | ISBN 1635500613 (alk. paper)
Subjects: | MESH: Speech--physiology | Speech Perception | Speech Disorders | Respiratory System--anatomy & histology
Classification: LCC QP306 | NLM WV 501 | DDC 612.7/8--dc23
LC record available at https://lccn.loc.gov/2018018596

Contents

PREFACE ACKNOWLEDGMENTS REVIEWERS	
INTRODUCTION	1
Focus of the Book	1
Domain of Preclinical Speech Science	1
Levels of Observation	1
Subsystems of Speech Production and Swallowing	3
Applications of Data	4
Domain of Preclinical Hearing Science	4
Levels of Observation	4
Subsystems of the Auditory System	5
Applications of Data	6
Review	7
2 BREATHING AND SPEECH PRODUCTION	9
Introduction	9
Anatomy of the Breathing Apparatus	9
Skeletal Framework	9
Breathing Apparatus and Its Subdivisions	10
Pulmonary Apparatus	10
Chest Wall	12
Pulmonary Apparatus–Chest Wall Unit	12
Forces of Breathing	13
Passive Force	13
Active Force	14
Muscles of the Rib Cage Wall	14
Muscle of the Diaphragm	17
Muscles of the Abdominal Wall	17
Summary of Passive and Active Forces	20
Realization of Passive and Active Forces	22
Movements of Breathing	22
Movements of the Rib Cage Wall	22
Movements of the Diaphragm	23
Movements of the Abdominal Wall	25
Relative Movements of the Rib Cage Wall and Diaphragm–Abdominal Wall	25
Forces Underlying Movements	25 27
Control Variables of Breathing Lung Volume	27 27
Alveolar Pressure	27
	20

	Chest Wall Shape	31
	Neural Control of Breathing	34
	Control of Tidal Breathing	34
	Control of Special Acts of Breathing	36
	Peripheral Nerves of Breathing	37
	Ventilation and Gas Exchange During Tidal Breathing	38
	Breathing and Speech Production	40
	Extended Steady Utterances	40
	Running Speech Activities	44
	Variables That Influence Speech Breathing	49
	Body Position	49
	Extended Steady Utterances in the Supine Body Position	50
	Running Speech Activities in the Supine Body Position	52
	Speech Breathing in Other Body Positions	54
	Body Type	55
	Age	55
	Sex	57
	Ventilation and Drive to Breathe	57
	Cognitive-Linguistic and Social Variables	58
	Review	59
	References	60
3	LARYNGEAL FUNCTION AND SPEECH PRODUCTION	63
	Introduction	63
	Anatomy of the Laryngeal Apparatus	63
	Skeletal Framework	63
	Thyroid Cartilage	63
	Cricoid Cartilage	64
	Arytenoid Cartilages	65
	Epiglottis	66
	Hyoid Bone	66
	Laryngeal Joints	66
	Cricothyroid Joints	68
	Cricoarytenoid Joints	69
	Internal Topography	72
	Laryngeal Cavity	72
	Vocal Folds	72
	Ventricular Folds	75
	Laryngeal Ventricles	75
	Ligaments and Membranes	75
	Forces of the Laryngeal Apparatus	77
	Intrinsic Laryngeal Muscles	78
	Extrinsic Laryngeal Muscles	82
	Supplementary Laryngeal Muscles	83
	Infrahyoid Muscles	83
	Suprahyoid Muscles	85
	Summary of the Laryngeal Muscles	85
	Movements of the Laryngeal Apparatus	86
	Movements of the Vocal Folds	86
	Vocal Fold Abduction	86

vi

	Vocal Fold Adduction	87
	Vocal Fold Length Change	89
	Movements of the Ventricular Folds	89
	Movements of the Epiglottis	91
	Movements of the Laryngeal Housing	91
	Control Variables of Laryngeal Function	91
	Laryngeal Opposing Pressure	92
	Laryngeal Airway Resistance	92
	Glottal Size and Configuration	93
	Stiffness of the Vocal Folds	94
	Effective Mass of the Vocal Folds	95
	Neural Substrates of Laryngeal Control	95
	Laryngeal Functions	97
	Degree of Coupling Between the Trachea and Pharynx	97
	Protection of the Pulmonary Airways	98
	Containment of the Pulmonary Air Supply	98
	Sound Generation	98
	Laryngeal Function in Speech Production	98
	Transient Noise Production	99
	Sustained Turbulence Noise Production	99
	Sustained Voice Production	100
	Vocal Fold Vibration	101
	Fundamental Frequency	104
	Sound Pressure Level	106
	Fundamental Frequency–Sound Pressure Level Profiles	107
	Spectrum	107
	Voice Registers	108
	Running Speech Activities	111
	Fundamental Frequency	111
	Sound Pressure Level	112
	Spectrum	113
	Articulation	113
	Variables that Influence Laryngeal Function During Speech Production	113
	Age	113
	Sex	116
	Review	118
	References	119
4	VELOPHARYNGEAL-NASAL FUNCTION AND SPEECH PRODUCTION	127
	Introduction	127
	Anatomy of the Velopharyngeal-Nasal Apparatus	127
	Skeletal Framework	127
	Pharynx	130
	Velum	132
	Nasal Cavities	133
	Outer Nose	134
	Forces of the Velopharyngeal-Nasal Apparatus	135
	Muscles of the Pharynx	135
	Muscles of the Velum	139
	Muscles of the Outer Nose	142

vii

	Movements of the Velopharyngeal-Nasal Apparatus	143
	Movements of the Pharynx	143
	Movements of the Velum	144
	Movements of the Outer Nose	145
	Control Variables of Velopharyngeal-Nasal Function	145
	Velopharyngeal-Nasal Airway Resistance	145
	Velopharyngeal Sphincter Compression	146
	Velopharyngeal-Nasal Acoustic Impedance	147
	Neural Substrates of Velopharyngeal-Nasal Control	148
	Velopharyngeal-Nasal Functions	149
	Coupling Between the Oral and Nasal Cavities	149
	Coupling Between the Nasal Cavities and Atmosphere	150
	Ventilation and Velopharyngeal-Nasal Function	151
	Nasal Valve Modulation	151
	Nasal Cycling (Side-to-Side)	152
	Nasal-Oral Switching	152
	Velopharyngeal-Nasal Function and Speech Production	152
	Sustained Utterances	152
	Running Speech Activities	154
	Variables that Influence Velopharyngeal-Nasal Function	156
	Body Position	156
	Age	157
	Sex	159
	Review	160
	References	161
5	PHARYNGEAL-ORAL FUNCTION AND SPEECH PRODUCTION	165
	Introduction	165
	Anatomy of the Pharyngeal-Oral Apparatus	165
	Skeletal Framework	165
	Maxilla	165
	Mandible	166
	Temporomandibular Joints	167
	Internal Topography	170
	Pharyngeal Cavity	170
	Oral Cavity	170
	Buccal Cavity	172
	Mucous Lining	172
	Forces of the Pharyngeal-Oral Apparatus	172
	Muscles of the Pharynx	172
	Muscles of the Mandible	173
	Muscles of the Tongue	175
	Muscles of the Lips	178
	Movements of the Pharyngeal-Oral Apparatus	182
	Movements of the Pharynx	183
	Movements of the Mandible	183
	Movements of the Tongue	184
	Movements of the Lips	184
	Control Variables of Pharyngeal-Oral Function	186
	Pharyngeal-Oral Lumen Size and Configuration	186

	Pharyngeal-Oral Structural Contact Pressure	188
	Pharyngeal-Oral Airway Resistance	188
	Pharyngeal-Oral Acoustic Impedance	189
	Neural Substrates of Pharyngeal-Oral Control	190
	Pharyngeal-Oral Functions	191
	Degree of Coupling Between the Oral Cavity and Atmosphere	191
	Chewing and Swallowing	191
	Sound Generation and Filtering	191
	Speech Production: Articulatory Descriptions	192
	Vowels	192
	Place of Major Constriction	192
	Degree of Major Constriction	194
	Lip Rounding	194
	Diphthongs	194
	Consonants	194
	Manner of Production	195
	Place of Production	195
	Voicing	195
	Speech Production Stream: Articulatory Processes	195
	Coarticulation	196
	Traditional Theory of Coarticulation (Feature Spreading)	196
	Problems with the Traditional Theory of Coarticulation	200
	Articulatory Phonology or Gesture Theory	200
	Variables That Influence Pharyngeal-Oral Function	202
	Age	202
	Sex	206
	Review	207
	References	208
6	SPEECH PHYSIOLOGY MEASUREMENT AND ANALYSIS	213
	Introduction	213
	Measurement and Analysis of Breathing	213
	Spirometry	213
	Chest Wall Surface Tracking	215
	Manometry	218
	Measurement and Analysis of Laryngeal Function	219
	Endoscopy	219
	Electroglottography	222
	Aeromechanical Observations	224
	Measurement and Analysis of Velopharyngeal-Nasal Function	227
	Nasendoscopy	227
	Aeromechanical Observations	227
	Measurement and Analysis of Pharyngeal-Oral Function	230
	Structural and Functional Imaging	230
	X-Ray Imaging	230
	Magnetic Resonance Imaging	231
	Ultrasonic Imaging	232
	Articulatory Tracking	232
	X-Ray Microbeam Imaging	232
	Electromagnetic Sensing (Articulography)	234

ix

PRECLINICAL SPEECH SCIENCE: ANATOMY, PHYSIOLOGY, ACOUSTICS, AND PERCEPTION

	Optoelectronic Tracking Electropalatographic Monitoring	234 235
	Aeromechanical Observations	235
	Health Care Professionals and Clinical Measurements	235
	Review	240
	References	241 241
7	ACOUSTICS	247
	Introduction	247
	Pressure Waves	247
	The Motions of Vibrating Air Molecules Are Governed by Simple Forces	247
	The Motions of Vibrating Air Molecules Change the Local Densities of Air	250
	Pressure Waves, Not Individual Molecules, Propagate Through Space and Vary as a	250
	Function of Both Space and Time	
	The Variation of a Pressure Wave in Time and Space Can Be Measured	251
	Temporal Measures	251
	Spatial Measures	254
	Wavelength and Direction of Sound	255
	Pressure Waves: A Summary and Introduction to Sinusoids	255
	Sinusoidal Motion	256
	Sinusoidal Motion (Simple Harmonic Motion) Is Derived from the Linear Projection of	256
	Uniform Circular Speed	257
	When the Linear Projection of Uniform Circular Speed Is Stretched Out in Time, the Result Is a Sine Wave	257
		258
	Sinusoidal Motion Can Be Described by a Simple Formula and Has Three Important Characteristics: Frequency, Amplitude, and Phase	238
	Sinusoidal Motion: A Summary	259
	Complex Acoustic Events	259
	Complex Periodic Events Have Waveforms That Repeat Their Patterns Over Time and	259
	Are Composed of Harmonically Related Frequency Components	207
	A Complex Periodic Waveform Can Be Considered as the Sum of the Individual	261
	Sinusoids at the Harmonic Frequencies	
	Complex Aperiodic Events Have Waveforms in Which No Repetitive Pattern Can Be	264
	Discerned, and Frequency Components That Are Not Harmonically Related	
	Complex Acoustic Events: A Summary	264
	Resonance	266
	Mechanical Resonance	267
	A Spring-Mass Model of Resonance	267
	The Relative Values of Mass (M) and Elasticity (K) Determine the Frequency of Vibration of	268
	the Spring-Mass Model	
	The Effects of Mass and Stiffness (Elasticity) on a Resonant System: A Summary	270
	Acoustic Resonance: Helmholtz Resonators	270
	The Neck of the Helmholtz Resonator Contains a Column, or Plug of Air, That Behaves Like a	270
	Mass When a Force Is Applied to It	
	The Bowl of a Resonator Contains a Volume of Air That Behaves Like a Spring When a Force	271
	Is Applied to It	
	Acoustic Resonance: Tube Resonators	273
	Resonance in Tubes: A Summary	276
	Resonance Curves, Damping, and Bandwidth	277
	Energy Loss (Damping) in Vibratory Systems Can Be Attributed to Four Factors	277

X

	Time- and Frequency-Domain Representations of Damping in Acoustic Vibratory Systems An Extension of the Resonance Curve Concept: The Shaping of a Source by the Acoustic Characteristics of a Resonator	278 280
	Resonance, Damping, Bandwidth, Filters: A Summary	282
	Review	282
	References	283
	Appendix 7–A: The Decibel Scale	284
8	ACOUSTIC THEORY OF VOWEL PRODUCTION	289
	Introduction	289
	What Is the Precise Nature of the Input Signal Generated by the Vibrating Vocal Folds?	290
	The Time Domain	290
	The Frequency Domain	293
	The Periodic Nature of the Waveform	294
	The Shape of the Waveform	295
	The Ratio of Open Time to Closed Time	297
	Nature of the Input Signal: A Summary	297
	Why Should the Vocal Tract Be Conceptualized as a Tube Closed at One End?	297
	The Response of the Vocal Tract to Excitation	298
	How Are the Acoustic Properties of the Vocal Tract Determined?	299
	Area Function of the Vocal Tract	301
	How Does the Vocal Tract Shape the Input Signal? (How Is the Source Spectrum	303
	Combined with the Theoretical Vocal Tract Spectrum to Produce a Vocal Tract Output?)	
	Formant Bandwidths	307
	Acoustic Theory of Vowel Production: A Summary	308
	What Happens to the Resonant Frequencies of the Vocal Tract When the Tube Is	309
	Constricted at a Given Location?	
	The Three-Parameter Model of Stevens and House	314
	Tongue Height	316
	Tongue Advancement	316
	Configuration of the Lips	318
	Importance of the Stevens and House Rules: A Summary	319
	The Connection Between the Stevens and House Rules and Perturbation Theory	320
	Why Are the Stevens and House Rules Important?	322
	Another Take on the Relationship Between Vocal Tract Configuration and Vocal Tract Resonances	323
	Confirmation of the Acoustic Theory of Vowel Production	324
	Analog Experiments	325
	Human Experiments Review	325 326
	References	326
9	THEORY OF CONSONANT ACOUSTICS	329
	Introduction	329
	Why Is the Acoustic Theory of Speech Production Most Accurate and Straightforward	329
	for Vowels?	
	The Acoustics of Coupled (Shunt) Resonators and Their Application to Consonant Acoustics	330
	Nasal Murmurs	330
	Energy Loss in the Nasal Cavities, Antiresonances, and the Relative Amplitude of	334

Nasal Murmurs

	Nasal Murmurs: A Summary	335
	Nasalization	335
	Nasalization: A Summary	338
	The Importance of Understanding Nasalization	338
	Coupled (Shunt) Resonators in the Production of Lateral Sounds	339
	Coupled (Shunt) Resonators in the Production of Obstruent Sounds	339
	What Is the Theory of Fricative Acoustics?	341
	Fluid Flow in Pipes and Source Types	341
	Aeromechanic/Acoustic Effects in Fricatives: A Summary	344
	A Typical Fricative Waveform and Its Aeromechanical Correlates	345
	Mixed Sources in Fricative Production	346
	Shaping of Fricative Sources by Vocal Tract Resonators	346
	Measurement of Fricative Acoustics	349
	Spectral Measurements	349
	Temporal Measurements	350
	The Acoustic Theory of Fricatives: A Summary	351
	What Is the Theory of Stop Acoustics?	351
	Intervals of Stop Consonant Articulation: Aeromechanics and Acoustics	353
	Closure (Silent) Interval	353
	Release (Burst) Interval	354
	Frication and Aspiration Intervals	355
	Voice-Onset Time	356
	Shaping of Stop Sources by Vocal Tract Resonators	356
	The Nature of Stop Sources	357
	The Shaping of Stop Sources	357
	Measurement of Stop Acoustics	358
	Spectral Measurements	359
	Temporal Measurements	359
	Stop Consonants: A Summary	359
	What Is the Theory of Affricate Acoustics?	360
	Acoustic Contrasts Associated with the Voicing Distinction in Obstruents	360
	Review	361
	References	361
10	SPEECH ACOUSTIC MEASUREMENT AND ANALYSIS	363
	Introduction	363
	A Historical Prelude	363
	The Sound Spectrograph: History and Technique	369
	The Original Sound Spectrograph: Summary	372
	Interpretation of Spectrograms: Specific Features	373
	Axes	373
	Glottal Pulses	375
	Formant Frequencies	375
	Silent Intervals and Stop Bursts	376
	Aperiodic Intervals	378
	Segmentation of Spectrograms	379
	Speech Acoustics Is Not All About Segments: Suprasegmentals	382
	Digital Techniques for Speech Analysis	384
	Speech Analysis by Computer: From Recording to Analysis to Output	384
	Sampling Rate	385

xii

	Filters Bits	385 385
	Analysis and Display	386
	Review	388
	References	388
11	ACOUSTIC PHONETICS DATA	391
	Introduction	391
	Vowels	391
	Vowel Acoustics: Dialect and Cross-Language Phonetics	398
	Within-Speaker Variability in Formant Frequencies	401
	Summary of Vowel Formant Frequencies	403
	A Note on Vowel Formant Frequencies Versus Formant Trajectories	404
	Vowel Durations	406
	Intrinsic Vowel Durations	406
	Extrinsic Factors Affecting Vowel Durations	407
	Diphthongs	409
	Diphthongs: Two Connected Vowels or a Unique Phoneme?	410
	Diphthong Duration	412
	Nasals Nasal Murmurs	412 412
	Nasal Murmurs Nasal Place of Articulation	412 415
	Nasalization	413
	Semivowels	418
	Constriction Interval	421
	Formant Transitions	421
	Semivowel Acoustics and Speech Development	423
	Semivowel Acoustics and Speech Development	423
	Fricatives	425
	Sibilants Versus Nonsibilants: Spectral Characteristics	425
	Quantification of Fricative Spectra	426
	Formant Transitions and Fricative Distinctions	431
	Fricative Duration	432
	Laryngeal Devoicing Gesture and Fricative Duration	435
	/h/ Acoustics	436
	Stops	438
	Closure Interval and Burst	439
	Closure Interval Duration	439
	Flap Closures	440
	Closure Duration and Place of Articulation	441
	Stop Voicing: Some Further Considerations	441
	Laryngeal Devoicing Gesture, Stop Closures, and Voice Onset Time	441
	Bursts	445
	Acoustic Invariance for Stop Place of Articulation	446
	Acoustic Invariance and Theories of Speech Perception	449
	Locus Equations	450
	Acoustic Invariance at the Interface of Speech Production and Perception	452
	Affricates	453
	Acoustic Characteristics of Prosody	454
	Phrase-Level F0 Contours	454

	Phrase-Level Intensity Contours	456
	Stress	457
	Rhythm	458
	Review	459
	References	460
12	SPEECH PERCEPTION	467
	Introduction	467
	Early Speech Perception Research and Categorical Perception	467
	The /ba/-/da/-/ga/ Experiment	468
	Categorical Perception: General Considerations	471
	Labeling Versus Discrimination	472
	Categorical Perception: So What?	472
	Speech Perception Is Species Specific	474
	The Motor Theory of Speech Perception: Proofs and Falsifications	474
	Categorical Perception of Stop Place of Articulation Shows the "Match" to Speech Production	474
	Duplex Perception	475
	Acoustic Invariance	479
	The Competition: General Auditory Explanations of Speech Perception	482
	Sufficient Acoustic Invariance	482
	Replication of Speech Perception Effects Using Nonspeech Signals	483
	Animal and Infant Perception of Speech Signals	485
	The Competition: Direct Realism	486
	Vowel Perception	488
	Motor Theory (Original and Revised)	488
	Auditory Theories	488
	Normalization	489
	Direct Realism	490
	A Summary of Speech Perception Theories	490
	Speech Perception and Word Recognition	491
	Speech Intelligibility	493
	"Explanatory" Speech Intelligibility Tests	495
	Scaled Speech Intelligibility	496
	Phonetic Transcription	498
	Why Should Speech-Language Pathologists and Audiologists Care About Speech	499
	Perception?	-04
	Review	501
	References	501
13	ANATOMY AND PHYSIOLOGY OF THE AUDITORY SYSTEM	505
	Introduction	505
	Temporal Bone	505
	Peripheral Anatomy of the Auditory System	507
	Outer Ear (Conductive Mechanism)	508
	Pinna (Auricle)	508
	External Auditory Meatus (External Auditory Canal)	509
	Tympanic Membrane (Eardrum)	511
	Middle Ear (Conductive Mechanism)	512
	Chambers of the Middle Ear	512
	Ossicles and Associated Structures	513

Ligaments of the Middle Ear	515
Muscles of the Middle Ear	516
Auditory (Eustachian) Tube	517
Medial and Lateral Wall Views of the Middle Ear: A Summary	518
Transmission of Sound Energy by the Conductive Mechanism	519
Inner Ear (Sensorineural Mechanism)	521
Vestibular System	522
Semicircular Canals	523
Vestibule: Saccule and Utricle	524
Summary: Vestibular Structures and Mechanisms	524
Cochlea	525
Fluid Motion within the Scalae: A Broad View	527
Hair Cells and Associated Structures	527
Traveling Waves	530
The Traveling Wave Is Transformed to Action Potentials	533
Auditory Nerve and Auditory Pathways (Neural Mechanism)	533
Auditory Nerve and Associated Structures	534
Efferent Auditory System	534
"Tuning" of the Peripheral Frequency Response	535
Ascending Auditory Pathways	536
Acoustic Reflex	538
Review	540
References	541

4	AUDITORY PSYCHOPHYSICS	543
1	Auditory Psychophysics	543
]	Psychophysics of Loudness	543
	Auditory Thresholds	543
	Equal Loudness Contours for Sinusoids	546
	The Psychophysical Function Relating SPL to Scaled Loudness of Sinusoids	546
	Phons	547
	Sones	547
	Loudness of Complex Sounds	550
	The Peripheral Auditory System Is a Series of Bandpass Filters	550
	The Critical Band Concept and the Loudness of Complex Sounds	556
	Sensitivity of the Auditory System to Loudness Change	556
]	Psychophysics of Pitch	558
	Pitch of Sinusoids	559
	Sensitivity of the Auditory System to Pitch Change	561
	Pitch of Complex Acoustic Events	563
	Pitch of Complex Periodic Events	564
	Pitch of Complex Aperiodic Events	565
]	Psychophysics of Timbre	566
]	Psychophysics of Time	566
]	Psychophysics of Sound Localization	568
	Interaural Cues to Sound Location	570
	Auditory Objects and Auditory Scene Analysis	572
]	Review	575
]	References	577

xv

15	NEURAL STRUCTURES AND MECHANISMS FOR SPEECH, LANGUAGE, AND HEARING	579
	Introduction	579
	The Nervous System: An Overview and Concepts	579
	Central Versus Peripheral Nervous System	579
	Autonomic Nervous System	580
	Anatomical Planes and Directions	581
	White and Gray Matter, Tracts and Nuclei, Nerves and Ganglia	584
	Gray Matter and Nuclei	584
	White Matter and Fiber Tracts	585
	Ganglia	585
	Efferent and Afferent	585
	Neurons and Synapses	586
	Lateralization and Specialization of Function	586
	Cerebral Hemispheres and White Matter	589
	Cerebral Hemispheres	589
	Frontal Lobe	590
	Parietal Lobe	593
	Temporal Lobe	594
	Occipital Lobe	596
	Insula	596
	Limbic System (Limbic Lobe)	597
	Cerebral White Matter	597
	Association Tracts	598
	Striatal Tracts	601
	Commissural Tracts	601
	Descending Projection Tracts	602
	Ascending Projection Tracts	606
	Subcortical Nuclei and Cerebellum	607
	Basal Ganglia	607
	Cortico-Striatal-Cortical Loop	610
	Role of Basal Ganglia	611
	Thalamus	612
	Cerebellum	612
	Cortico-Cerebellar-Cortical Loop	613
	Role of Cerebellum	613
	Cerebellum and Basal Ganglia: New Concepts	614
	Brainstem and Cranial Nerves	615
	Surface Features of the Brainstem: Ventral View	615
	Ventral Surface of Midbrain	616
	Ventral Surface of Pons	617
	Ventral Surface of Medulla	617
	Surface Features of the Brainstem: Dorsal View	617
	Dorsal Surface of Midbrain	617
	Dorsal Surface of Pons	619
	Dorsal Surface of Medulla	619
	Cranial Nerves and Associated Brainstem Nuclei	619
	Cranial Nerve I (Olfactory)	622
	Cranial Nerve II (Optic)	622

Cranial Nerve III (Oculomotor)	622
Cranial Nerve IV (Trochlear)	622
Cranial Nerve V (Trigeminal)	623
Cranial Nerve VI (Abducens)	624
Cranial Nerve VII (Facial)	625
Cranial Nerve VIII (Auditory-Vestibular Nerve)	626
Cranial Nerve IX (Glossopharyngeal)	627
Cranial Nerve X (Vagus)	628
Cranial Nerve XI (Spinal Accessory Nerve)	629
Cranial Nerve XII (Hypoglossal)	629
Cortical Innervation Patterns	630
Why Innervation Patterns Matter	631
The Cranial Nerve Exam and Speech Production	633
Spinal Cord and Spinal Nerves	633
Spinal Cord	633
Spinal Nerves	635
Nervous System Cells	636
Glial Cells	636
Neurons	636
Cell Body (Soma)	637
Axon and Terminal Button	639
Synapses	639
Resting Potential, Action Potential, and Neurotransmitters	640
Resting Potential	640
Action Potential	642
Synaptic Transmission and Neurotransmitters	644
Neuromuscular Junction	645
Meninges, Ventricles, Blood Supply	647
Meninges	647
Dura Mater	648
Arachnoid Mater	649
Pia Mater	649
Meninges and Clinically Relevant Spaces	650
Ventricles	650
Lateral Ventricles	651
Third Ventricle	651
Cerebral Aqueduct, Fourth Ventricle, and Other Passageways for CSF	652
Production, Composition, and Circulation of CSF	652
Blood Supply of Brain	652
Anterior Circulation	652
Posterior Circulation	654
Circle of Willis	654
MCA and Blood Supply to the Dominant Hemisphere	655
Blood–Brain Barrier	658
Speech and Language Functions of the Brain: Possible Sites and Mechanisms	659
Network View of Brain Function	659
DIVA	659
DIVA: Speech Sound Map (lvPMC)	661
DIVA: Articulatory Velocity/Position Maps (PMC)	662

xvii

	DIVA: Auditory and Somatosensory Processing: Parietal Cortex and Frontal-Parietal Association Tracts	663
	DIVA: Where Is Aphasia, Where Are Dysarthria Types?	664
	Review	665
	References	666
16	SWALLOWING	669
	Introduction	669
	Anatomy	670
	Breathing, Laryngeal, Velopharyngeal-Nasal, and Pharyngeal-Oral Structures	670
	Esophagus	671
	Stomach	671
	Forces and Movements of Swallowing	673
	Oral Preparatory Phase	674
	Oral Transport Phase	676
	Pharyngeal Phase	676
	Esophageal Phase	677
	Overlap of Phases	678
	Breathing and Swallowing	678
	Neural Control of Swallowing	681
	Role of the Peripheral Nervous System	681
	Role of the Central Nervous System	682
	Variables That Influence Swallowing	683
	Bolus Characteristics	683
	Consistency and Texture	683
	Volume	683
	Taste	684
	Swallowing Mode	684
	Single Versus Sequential Swallows	684
	Cued Versus Uncued Swallows	685
	Body Position	686
	Development	686
	Aging	687
	Sex	688
	Measurement and Analysis of Swallowing	688
	Videofluoroscopy	688
	Endoscopy	689
	Manometry	690
	Surface Electromyography	692
	Ultrasonography	692
	Aeromechanical Observations	692
	Client Self-Report	694
	Health Care Professionals	694
	Review	695
	References	697

NAME INDEX	703
SUBJECT INDEX	715

Preface

The third edition of *Preclinical Speech Science* is a carefully revised and expanded version of the second edition of the textbook. The revised parts include lineby-line edits of all chapters from the second edition for greater clarity, removal of certain sections (several of which are available as supplementary materials on the textbook companion website, including the scenarios of the previous edition), and addition of new material to chapters from the second edition, including text, figures, and recent references from the research literature.

This new edition also contains three new chapters, including Chapter 6 ("Speech Physiology Measurement and Analysis"), Chapter 13 ("Auditory Anatomy and Physiology"), and Chapter 14 ("Auditory Psychophysics"). Chapter 6 was added to complement Chapter 10 ("Speech Acoustic Measurement and Analysis") and Chapters 13 and 14 were added in response to suggestions made by colleagues and students, that this textbook would benefit from chapter-length material on Hearing Science. With the inclusion of these two chapters on hearing science, perhaps a more accurate title for the textbook would be *Preclinical Speech and Hearing Science*. Because this is the third edition of the text, we have chosen to retain the original title to be consistent with the previous editions.

The Workbook accompanying the third edition of this textbook has also been updated with complete sets of problems and exercises for the three new chapters, and revised exercises for all other chapters. The Workbook is a self-study resource, complete with answers to the problems and exercises.

A PluralPlus companion website also accompanies this new edition of *Preclinical Speech Science*. The website has supplementary text and figures, sound files, study guides, and instructor lecture slides. 64

Figure 3–1. Skeletal framework of the laryngeal apparatus. This framework is composed of two paired cartilages (arytenoid cartilages and corniculate cartilages), three unpaired cartilages (thyroid cartilage, cricoid cartilage, and epiglottis), and one bone (hyoid bone).

the thyroid cartilage and diverge widely (more so in women than in men) toward the back. The configuration of the two thyroid laminae resembles the bow of a ship. The line of fusion between the two plates is called the angle of the thyroid. The upper part of the structure contains a prominent V-shaped depression termed the thyroid notch that can be palpated at the front of the neck. This notch is located just above the most forward projection of the cartilage, an outward jutting called the thyroid prominence or Adam's apple.

The back edges of the thyroid laminae extend upward into two long horns, called the superior cornua, and downward into two short horns, called the inferior cornua. The superior cornua are coupled to the hyoid bone. The inferior cornua have facets (areas where other structures join) on their lower inside surfaces that form joints with the cricoid cartilage. The inferior cornua straddle the cricoid cartilage like a pair of legs (see Figure 3–1).

Cricoid Cartilage

The cricoid cartilage forms the lower part of the laryngeal skeleton. It is a ring-shaped structure located above the trachea. As shown in Figure 3–3, the cricoid cartilage has a thick plate at the back, the posterior quadrate lamina, which resembles a signet on a finger ring. A semicircular structure, called the anterior arch, forms the front of the cricoid cartilage and is akin to a band on a finger ring.

Four facets are located on the cricoid cartilage. The lower two facets, one on each side at the same level, are positioned near the junction of the posterior quadrate lamina and anterior arch. Each of these facets articulates with a facet on one of the inferior cornua

134

Figure 4-7. Superior, middle, and inferior nasal conchae (also called nasal turbinates). These conchae contain many nooks and crannies and create a large surface area to the inner nose.

provides a large surface area to the inner nose and has a rich blood supply. Near the front of each nasal cavity is the nasal vestibule, a modest dilation just inside the aperture of the anterior naris.

There are four sinuses (hollows) that surround the nasal cavities. Called the paranasal sinuses, they include the maxillary, frontal, ethmoid, and sphenoid sinuses, each located within the bone of corresponding name. Three of these are shown in Figure 4–8. The sphenoid, not pictured, is located behind and above the superior nasal conchae within the sphenoid bone. They are usually air filled but can become liquid filled when infected. Their relevance to speech is primarily related to their effects on the resonance characteristics of the acoustic signal during nasal sound production (see Chapter 9).

Outer Nose

Unlike the other components of the velopharyngealnasal apparatus, the outer nose is familiar to everyone. The outer nose is hard to ignore because it is in the center of the face and projects outward and downward conspicuously. The more prominent surface features of the outer nose include the root, bridge, dorsum, apex,

Figure 4-8. The paranasal sinuses. Shown in this figure are the maxillary, frontal, and ethmoid sinuses. Not shown are the paired sphenoid sinuses, which are located behind and above the superior nasal conchae.

Figure 6-11. Airflow recorded at the airway opening during vowel production. The black tracings show the fast airflow events associated with each cycle of vocal fold vibration. The red tracings represent the average airflow obtained by low-pass filtering the black airflow signal (to filter out high-frequency airflow events). The bottom set of tracings are a zoomed-in image from the upper set of tracings. The fundamental frequency is about 100 Hz (courtesy of Brad Story).

airway-opening airflow to calculate laryngeal airway resistance. As shown in Figure 6-12, measurements are taken at moments that enable estimates to be made of the air pressure difference across the larynx and the airflow through it during vowel productions. Resistance is calculated by dividing the air pressure difference (estimated tracheal air pressure minus estimated pharyngeal air pressure) by the translaryngeal airflow (estimated from the airflow at the airway opening). Resistance values are typically expressed in cmH₂O/ LPS (centimeters of water/liters per second) and can range from very low (wide open airway) to infinite (airtight closure of the airway). Such resistance values reflect the degree of opening of the laryngeal airway during voice production (Holmberg, Hillman, & Perkell, 1988, 1999; Leeper & Graves, 1984; Smitheran & Hixon, 1981).

Phonation threshold pressure is another aeromechanical measure that can provide information about laryngeal function, or more specifically, vocal fold function. Phonation threshold pressure is defined as the minimum tracheal pressure required to initiate vocal fold vibration and is understood to reflect the status of the vocal folds (viscosity and thickness) and their distance from one another (glottal width) (Titze, 1988). Although there are invasive ways to measure phonation threshold pressure, the most common way to estimate it is by using the noninvasive approach depicted in Figure 6–7, with the client producing the /p/-vowel syllable strings in the quietest voice possible (Verdolini-Marston, Titze, & Druker, 1990). The lower the peak oral pressures during /p/ productions (estimated tracheal pressure), while still maintaining voicing during the vowel segments, the lower the phonation threshold pressure. And the lower the phonation threshold pressure, the healthier vocal fold function is judged to be. Although this measure is relatively easy to obtain, it is not without its limitations. For example, it is common

Figure 9-4. Spectra for the vowels $/\alpha$, $/\epsilon$, /u, and /i for non-nasalized (*blue curves*) and nasalized (*red curves*) productions. Frequency is plotted between 0 and 1300 Hz on the x-axis and relative amplitude, in dB, is plotted on the ordinate. NR = nasal resonance. AR = antiresonance. F1_o = F1 of non-nasalized vowel. F1 = F1 of nasalized vowel. For each vowel except /i/, there is a nasal resonance-antiresonance-F1 pattern in the nasalized spectra. In the case of /i/, the nasal resonance is canceled by the antiresonance because of the small coupling (small velopharyngeal port opening) between the oral and nasal cavities. From "Some acoustical and perceptual correlates of nasal vowels," by K. Stevens, G. Fant, and S. Hawkins in *In Honor of Ilse Lehiste* (p. 246), edited by R. Channon and L. Shockey, 1987, Dordrecht, Netherlands: Foris. Copyright 1987 by Foris. Modified and reproduced with permission.

Figure 11–30. Graphic summary of VOT data from English speakers. A VOT continuum ranging from –30 to +50 ms is shown, and effects are indicated by the phonetic symbols and boxes above the continuum line. See text for additional detail.

glottal pulse of the following vowel, negative VOT values represent the time by which glottal pulses within the closure interval *precede* the burst.

Both positive and negative VOT values are common in voiced stop production. As noted above, negative VOTs are associated with stops produced in the utterance-initial position (no speech sounds preceding the stop); intervocalic voiced stops often have glottal pulses during the closure interval, but these are not considered prevoiced. When voiced stops have glottal pulses that are not continuous throughout the closure interval, the VOT is often positive, but very short, as shown in Figure 11–30. The prevoiced, voiced stops reported by Lisker and Abramson all had VOTs more negative than –30 ms, the last negative value on the continuum shown in Figure 11–30.

Figure 11–30 shows a vertical dotted line at 25 ms along the VOT continuum. This line designates a boundary between typical positive VOTs for voiced and voiceless stops. Voiceless stops can be expected to have VOTs exceeding 25 ms (*long-lag* VOTs), whereas voiced stops have VOTs less than 25 ms (*short-lag* VOTs) (Weismer, 2006).

The boxes above the VOT continuum and to the right of the 25 ms boundary identify factors that cause VOT to vary in systematic ways. These boxes are in the long-lag range of the VOT continuum because the effects are most prominent for voiceless stops, with much smaller effects on the short-lag VOTs of voiced stops. VOT is affected by the position of a voiceless stop relative to a stressed vowel. Longer VOTs are

measured when the stop precedes, compared with follows, a stressed vowel. The box containing the V'CV frame has been placed to the right (longer VOTs) of the 'VCV box to indicate this effect. In fact, VOTs for voiceless stops in 'VCV frames may be so short as to place them in the short-lag range (Umeda, 1977). The effect of speaking rate on VOT, indicated in Figure 11-30 by the box and arrows immediately above the stress effects, are predictable from the direction of rate change. Slower rates produce longer VOTs for voiceless stops (shown by the arrow pointing to the right), and faster rates produce shorter VOTs (left-pointing arrow) (Kessinger & Blumstein, 1997). The reduction (shortening) of long-lag VOTs at very fast speaking rates is rarely so dramatic as to encroach on the short-lag range (Kessinger & Blumstein, 1997; Summerfield, 1975). Finally, the topmost box indicates that speaking style affects the value of long-lag VOTs. Longer VOTs for voiceless stops are produced in more formal speaking styles, sometimes referred to as citation form or "clear" speech (Krause & Braida, 2004; Smiljanić & Bradlow, 2005). Casual speech styles yield shorter VOTs. The difference between formal and casual speaking styles is likely to involve a difference in speaking rate. Formal speaking styles typically have slower rates than casual styles (Picheny et al., 1986).

A special case of VOT modification for voiceless stops is indicated by the "sCV" box above the short-lag range. "sCV" stands for prestressed s + stop clusters, in words such as "<u>stop</u>," "<u>sk</u>ate," "<u>speech</u>," "<u>as</u>tounding." Voiceless stops in s + stop clusters have short-lag cochlea is oriented in the head as if the tip is pointing along the horizontal axis. The back half of the cochlea is shown in this view. On either side of the center of the slice, two "triplets" of ducts are seen, one triplet at the base (labeled "basal turn" in the figure), the other just above it (labeled "middle turn"). The top triplet of ducts is at the apical turn of the cochlea, at the very tip of which the two outside ducts-the scala vestibuli and scala tympani-are connected. The center "core" section of the cut is called the modiolus (not labeled in Figure 13–16). The turns of the bony cochlea wrap around this center core as they spiral to the apex. The modiolus contains the nerve fibers that innervate the hair cells. It also contains ganglion cells where fibers emerging from the cochlea make their first synapse before continuing to the internal auditory meatus as the auditory part of the auditory-vestibular nerve.

From base to tip, the modiolus sends out two bony shelves toward the outer edges of the spiraling cochlea. These shelves are called the spiral lamina, whose bony extensions serve as the divider between the two outer ducts—the scala vestibuli and scala tympani (labeled only for the basal turns in Figure 13–16). The spiral lamina does not extend to the lateral, bony border of the cochlea. Rather, as described below, membranes extending from the end of the bony lamina to the inside of the lateral border of the cochlea create the third duct sitting between the scala vestibuli and scala tympani. This third duct is called the scala media, or alternately the cochlear duct. All three ducts are filled with fluid.

The second way to appreciate the structure of the cochlea is by studying a zoomed view of the ducts in the cochlea. The zoomed view of the bony cochlea in Figure 13–17 is from its basal turn. From top to bottom the ducts are the scala vestibuli, scala media, and scala tympani. At the beginning of the basal turn of the scala vestibuli, near the section shown in the figure, is the oval window. The termination of the basal turn of the scala tympani is the round window. The two membranes that extend from shelves of the spiral lamina to the outer edge of the cochlea, and enclose the scala media, are called Reissner's membrane (dividing the scala vestibuli from the scala media) and the basilar membrane (dividing the scala tympani from the scala

Figure 13-17. Zoom view of cochlear scalae from the basal turn of the cochlea.

604 PRECLINICAL SPEECH SCIENCE: ANATOMY, PHYSIOLOGY, ACOUSTICS, AND PERCEPTION

Figure 15-12. Upper left, view of fibers of the corona radiata descending in the cerebral hemispheres and gathering into a narrow bundle called the internal capsule (IC), which passes between several subcortical nuclei en route to the brainstem. *Lower right*, horizontal section of cerebral hemispheres showing the "boomerang" shape of the internal capsule. The anterior and posterior limbs plus the genu of the internal capsule are labeled. C = caudate nucleus; P = putamen; T = thalamus.

to reveal the fibers of the corona radiata and internal capsule. Even though the internal capsule is the tightly gathered merger of the many fibers of the corona radiata, the internal capsule has an anterior, middle, and posterior part (IC = internal capsule in Figure 15–12, upper image). The precise location of a coronal slice therefore determines which part of the internal capsule is displayed. Like so many other parts of the brain, the internal capsule is not a random jumble of fibers, but is arranged systematically based on the cortical origin of the fibers. In a horizontal (axial) slice (inset, lower right of Figure 15–12; the anterior part of the brain is

toward the top of the image) the internal capsule in each hemisphere has a boomerang shape with the "angle" of the boomerang most medial and the two arms extending away from this angle anterolaterally and posterolaterally. To provide a rough idea of the systematic arrangement of fibers within the internal capsule, most corticobulbar fibers associated with control of facial, jaw, tongue, velopharyngeal, and laryngeal muscles run through a compact bundle close to or within the angle (called the genu) of the internal capsule. Fibers descending to motor neurons in the spinal cord are mostly located in the posterior arm (called the

Figure 16-12. Simultaneous videofluoroscopy and pharyngeal high-resolution manometry of a 10 cc thin barium swallow from a 42-year-old healthy man (**A**) and a 67-year-old woman with dysphagia (**B**). High-resolution manometry sensors appear as black rectangles on the videofluoroscopy stills. Videofluoroscopy still images correspond to the time indicated by the vertical lines on the manometry plot with the same symbol at the top. In the data from the healthy man, pressures in the pharynx are low at rest (sensors 4-12: *dark blue*), whereas pressure is higher in the upper esophageal sphincter (sensors 13-14: light *blue/green*). During swallowing, the pharynx constricts, creating high pressures (*orange/red*) at the same time the upper esophageal sphincter relaxes (*dark blue*). The data from the woman with dysphagia reveals that she swallowed twice to clear the bolus, as indicated by the gap in the pressure wave (sensors 10-11: dark blue). Also note the area of elevated pressure in the upper esophageal sphincter (sensor 13: *light blue/green*) during opening. Courtesy of Timothy McCulloch, MD, and Corinne Jones, PhD, CCC-SLP.

Preclinical Speech Science Workbook

Preclinical Speech Science Workbook

THIRD EDITION

Jeannette D. Hoit Gary Weismer

5521 Ruffin Road San Diego, CA 92123

e-mail: info@pluralpublishing.com website: http://www.pluralpublishing.com

Copyright © 2020 by Plural Publishing, Inc.

Typeset in 12/14 Palatino by Flanagan's Publishing Services, Inc. Printed in South Korea through Four Colour Print Group

All rights, including that of translation, reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, including photocopying, recording, taping, Web distribution, or information storage and retrieval systems without the prior written consent of the publisher.

For permission to use material from this text, contact us by Telephone: (866) 758-7251 Fax: (888) 758-7255 e-mail: permissions@pluralpublishing.com

Every attempt has been made to contact the copyright holders for material originally printed in another source. If any have been inadvertently overlooked, the publishers will gladly make the necessary arrangements at the first opportunity.

Library of Congress Cataloging-in-Publication Data:

ISBN-13: 978-1-63550-063-9 ISBN-10: 1-63550-063-X

Contents

PREF	FACE	vii
Que	estions	1
1	Introduction	1
2	Breathing and Speech Production	5
3	Laryngeal Function and Speech Production	37
4	Velopharyngeal-Nasal Function and Speech Production	67
5	Pharyngeal-Oral Function and Speech Production	95
6	Speech Physiology Measurement and Analysis	119
7	Acoustics	145
8	Acoustic Theory of Vowel Production	163
9	Theory of Consonant Acoustics	177
10	Speech Acoustic Measurement and Analysis	185
11	Acoustic Phonetics Data	199
12	Speech Perception	217
13	Anatomy and Physiology of the Auditory System	225
14	Auditory Psychophysics	239
15	Neural Structures and Mechanisms for Speech, Language, and Hearing	251
16	Swallowing	265

Answers		277
1	Introduction	278
2	Breathing and Speech Production	279
3	Laryngeal Function and Speech Production	291
4	Velopharyngeal-Nasal Function and Speech Production	301
5	Pharyngeal-Oral Function and Speech Production	311
6	Speech Physiology Measurement and Analysis	322
7	Acoustics	330
8	Acoustic Theory of Vowel Production	343
9	Theory of Consonant Acoustics	354
10	Speech Acoustic Measurement and Analysis	363
11	Acoustic Phonetics Data	376
12	Speech Perception	391
13	Anatomy and Physiology of the Auditory System	400
14	Auditory Psychophysics	411
15	Neural Structures and Mechanisms for Speech, Language, and Hearing	418
16	Swallowing	429
REFERENCES		

Preface

The *Preclinical Speech Science Workbook, Third Edition* is a natural companion to the *Preclinical Speech Science, Third Edition* textbook. It has been carefully designed to help students reinforce, integrate, apply, and go beyond the material presented in the textbook.

The workbook contains a wide variety of activities. These include anatomic labeling, measuring physiologic and acoustic data, interpreting graphs, calculating quantitative problems, answering thought questions about material presented in the textbook, and conducting simple experiments (without the use of special equipment). The solutions to all these activities are provided at the back of the workbook; however, we strongly encourage students to work through each activity independently and refer to the solutions only when completely satisfied with their answers. This will provide the best learning experience and will help students make the transition from passive learners to active participants in their development toward becoming speech-language pathologists, audiologists, and clinical scientists.

3–3. Label the parts of the cricoid cartilage indicated in the figures.

4-6. Label the bones indicated in the figure.

(a) The two nasal cavities are separated from one another by the nasal

_____, which is made up of [Check one]

- _____ tendons and ligaments.
- _____ a matrix of soft tissue.

_____ muscle.

- _____ cartilage and bone.
- (b) The hard palate is made up of the _____ bone and the _____ bone.

6–21. The velopharyngeal orifice area can be estimated by a method developed by Warren and DuBois (1964; see Figure 6–15 in your textbook). Estimate the velopharyngeal orifice area using the formula and the values given below for oral pressure (P_1 , in dynes/cm²), nasal pressure (P_2 , in dynes/cm²), and nasal flow (in cubic centimeters per second, cc/s). The formula is:

Note that dynes/cm² is a unit of measure for pressure that is much smaller than cmH₂O (specifically, $1 \text{ cmH}_2\text{O} \approx 980 \text{ dynes/cm}^2$, so $1 \text{ dyne/cm}^2 \approx 0.001 \text{ cmH}_2\text{O}$). Also, note that *k* is a constant that adjusts for the fact that airflow is often turbulent during speech production, rather than laminar (smooth). The suggested value for *k* is 0.65, density of air \approx .001 (g/cm³), and the air pressure differential = P₁ – P₂.

Velopharyngeal orifice area is expressed in square centimeters (cm²). Calculate the velopharyngeal orifice area from the oral pressure, nasal pressure, and nasal flow values given below.

Oral Pressure (P ₁ ; dynes/cm ²)	Nasal pressure (P ₂ ; dynes/cm ²)	Nasal Flow (cc/s)	Velopharyngeal Orifice Area (cm²)
100	80	200	
100	0	0	
100	20	30	

Indicate which of the calculated values above best describes the velopharyngeal orifice area for:

Sustained vowel with normal voice quality	
Sustained vowel with hypernasal voice quality	
Sustained /m/	

13–30. When is the electrical potential of the hair cells of the organ of Corti and of the crista ampullaris changed?

13–31. The parts of the vestibular system that sense position of the head in the front-toback and side-to-side dimensions are the ______ and _____, respectively. These two structures are part of the organ called the ______.

13-32. The core of the cochlea is called the ______, which contains ______ originating at the base of the hair cells as well as the group of cell bodies called the ______.

13–33. The membranes that separate the three cochlear ducts are ______ and _____.

13-34. In three sentences or less, describe the organ of Corti.