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Preface

This text provides resources to guide the student  
in all areas of hearing science: acoustics, instru-
mentation, anatomy/physiology, and psychoacous
tics. It also provides a brief introduction to speech  
acoustics. Introductory/intermediate chapters are  
intended for introductory courses in hearing sci
ence. The advanced chapters are suitable for doc-
toral courses in audiology. The professor can select 
from among the introductory chapters as he or she 
feels appropriate for introductory courses, or more  
advanced chapters in order to introduce topics 
within doctoral courses in hearing science. The 
later introductory chapters require only material  
from other introductory chapters, and similarly one 
can read and understand intermediate chapters 
without having read any of the advanced chapters.  
At the end of this Preface is a breakdown of which 
chapters have which level of information.

Our goal was to create a very readable text. 
We endeavored to explain concepts as simply as 
possible. 

Some books are reference texts—they pre
sent an idea concisely and have information in one 
and only one location. They are great resources 
for reviewing information already learned. Some 
books are instructional texts, and this is one of 
them. We assume that the reader has no prior 
exposure to the information. If the novice reads a 
reference text, there will likely be times when he 
or she thinks “I’m not sure I understand.” When  
this happens to professionals learning new infor
mation, they search out different articles and books 
to expand their understanding. The student who 
has paid a high price for a textbook and does not 
yet know where to find, or has limited access to,  
other texts finds this frustrating. This book is to 
attempt to present information clearly and to re-
peat that information when presenting more de-
tailed information. The intentional redundancy in  
the more advanced chapters allows them to serve 
as reference chapters for students who have already 
learned the more basic information.

Learning theory says that repetition (e.g., read
ing information more than one way and both hear

ing  and  reading) increases retention, but recall 
practice is much more effective. The reader is en
couraged to attempt to predict summaries. Chap-
ters include review questions to practice recall. 
The website www.audstudent.com has a resources  
section that provides additional review questions 
and supplemental materials.

The hearing sciences are interesting but not 
necessarily easy. We hope this text with its some-
what colloquial writing style and repetition of key 
information facilitates mastery of the topic.

Although we think the hearing sciences are 
intrinsically interesting, we know that some stu-
dents have a strong preference for those aspects 
that relate directly to patient care. We have in-
cluded “Clinical Correlates,” which show exam-
ples of how the hearing sciences relate directly to 
clinical applications, for those who can use some 
motivation to master the scientific underpinnings.

ACOUSTICS AND  
INSTRUMENTATION

Introductory:	 Chapters 1, 2, 3, 4, 5

Intermediate:	 Chapters 6, 7

Advanced:	 Chapter 8

SPEECH ACOUSTICS

Intermediate:	 Chapters 9, 10

ANATOMY AND PHYSIOLOGY

Introductory:	� Chapters 11, 12, 13, 16, 18, 
20

Intermediate:	� Chapters 14, 15, 19, 21, 23, 
24, 25

Advanced:	 Chapters 17, 22, 26



PSYCHOACOUSTICS AND 
SPEECH PERCEPTION

Introductory:	 Chapter 27

Intermediate:	� Chapters 28, 30, 32, 33, 36, 
37, 38

Advanced:	� Chapters 29, 31, 34, 35, 39

Some chapters have “prerequisites.” Under-
standing the material in these chapters requires 
that the reader be familiar with the material cov-
ered in earlier chapters. These are listed in the 
following chart.

Chapter	 Prerequisite Chapters

	   1	 None

	   2	 None

	   3	 1

	   4	 1

	   5	 1, 2, 3, 4

	   6	 1

	   7	 2, 4, 6

	   8	 1, 2, 3, 6, 7

	   9	 1, 2, 3, 4, 5

	 10	 1, 2, 3, 4, 5, 9

	 11	 None

	 12	 11

	 13	 1, 2, 3, 4, 5, 11, 12

	 14	 1, 3, 11, 12, 13

	 15	 1, 4, 12, 13, 14

	 16	 1, 3, 11, 12, 13

	 17	 6, 16

	 18	 16

	 19	 18

	 20	 11, 16, 18

	 21	 20

	 22	 1, 3, 4, 7, 16, 17, 18, 19, 20, 21

	 23	 16, 20

	 24	 16

	 25	 12, 16, 20, 24

	 26	 24, 25

	 27	 None

	 28	 1, 11, 16, 18

	 29	 27, 28

	 30	 1, 2, 3, 11, 16, 18, 20, 27, 28

	 31	 1, 2, 12, 13, 18, 30

	 32	 1, 11, 16, 18, 30

	 33	 1, 11, 16, 18, 21, 27

	 34	 2, 23, 33

	 35	 21, 33, 34

	 36	 26, 30, 32

	 37	 23, 27, 30, 33

	 38	 1, 3, 30

	 39	� 1, 3, 9, 10, 12, 14, 16, 18, 20, 27, 
30, 31, 32, 33, 34, 35, 36, 37, 38
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24
Introduction to Peripheral Vestibular 

Anatomy and Physiology

The history of audiology’s involvement in vestib-
ular testing dates back to the mid-1970s, when 
Barber and Stockwell published a text on how to 
evaluate the balance system. Since the vestibular 
system is part of the ear, and as Dr. Barber was 
an otoneurologist, it made sense that the testing 
of the balance system became part of the prac-
tice of audiology. The involvement of the field 
grew along with knowledge of the pathologies of 
the vestibular system, and the diagnostic tests for 
balance disorders have expanded. Most doctor of 
audiology programs have two or three courses 
in vestibular evaluation and management. This 
chapter and Chapters 25 and 26 provide back-
ground on the anatomy and physiology to pre-
pare students for this coursework, and to provide 
the undergraduate student with an understand-
ing of how humans maintain balance.

Most of us give little thought to our sense of 
balance. Having a normal balance system means 
more than not being dizzy. A healthy vestibular sys-
tem allows moving without falling, knowing where 
our bodies are in space as we move, and it permits 
us to see a steady world as we move. Without our 
vestibular systems, when we move our view of the 
world would be similar to a video taken with one’s 
cell phone—jumping, blurry images.

The balance systems comprise more than 
just the vestibular structures in the inner ear. The 

vestibular sense organs are connected to brain-
stem structures that reflexively control the move-
ment of the eyes. This permits unblurred vision as 
we turn our heads. Nerve fibers in the brainstem 
go to the cerebellum, to the neck, and to motor 
pathways, all of which control body motions and 
allow us to remain upright. This chapter intro-
duces the peripheral vestibular system; Chapter 25 
provides more detail, and Chapter 26 describes 
advanced vestibular concepts including how the 
central nervous system integrates information to 
help us make the eye movements that allow us to 
keep focused vision as we move our heads and 
bodies. 

THE VESTIBULAR SYSTEM: BONY 
AND MEMBRANOUS LABYRINTHS

As was discussed in Chapter 16, the same fluids 
are in both the vestibular system and the cochlea. 
Perilymph is found between the bony walls of 
the vestibular system and the membranes; endo-
lymph is within the membranes. A small stalk, 
ductus reuniens, connects the endolymph-filled 
scala media of the cochlea to the saccule, 
which is connected to the utricle. The utricle 
and saccule are portions of the membranous lab-
yrinth that sense when our bodies are moving 
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in a straight line (e.g., riding in a car, descending 
in an elevator) and when our heads are tilting. The 
semicircular canals contain the sense organs that 
detect rotation, such as the head pivoting on the 
neck. The three semicircular canals open into the 
utricle, as shown in Figure 24–1. Each of the semi-
circular canals has an enlargement, or ampulla, at 
one end. The sensory cells are in the ampullae. 
(Ampulla is singular, ampullae is the plural form.)

A tube, called the cochlear aqueduct, runs 
from the perilymph-filled space of the bony 
labyrinth to the brain above. It appears that the 
opening to the cerebrospinal fluid (CSF) space of 
the brain is not patent; CSF is not freely flowing. 
(The chemistry of CSF and perilymph are a bit dif-
ferent.) Perilymph is thought to be derived from 
“blood serum substrate,” that is, the part of the 
blood other than the red and white blood cells. En-
dolymph in the cochlea is produced by stria vascu-
laris; in the vestibular system, a type of cell within 

the ampulla, dark cells, are believed to produce 
and nourish the endolymph. There is also a con-
nection, called the endolymphatic duct, between 
the saccule and utricle and the endolymphatic 
sac. The endolymphatic sac rests in the dura mater 
of the brain—the outside of the meninges, the cov-
ering of the cranium. The presence of these ducts 
to the brain hints at the inner ear’s ability to reg-
ulate the pressure of the inner ear fluids. If the 
system were to create too much endolymph or 
perilymph, there would be some room for expan-
sion. The endolymphatic sac could bulge a bit; 
the cochlear aqueduct might allow some pressure 
relief into the CSF-filled brain cavity.

Arrangement of the Semicircular Canals

Each of the three semicircular canals of one 
ear is oriented at right angles to each other. 
This is easier to envision in the sketch of the cir-
cles superimposed on three of the sides of a cube, 
shown in Figure 24–2.

However, the actual arrangement of the semi-
circular canals is not as simple as sketched in Fig-
ure 24–2; it is more like that in Figure 24–3. The 
semicircular canals are named for their anatomic 
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of the meninges, the covering of the cranium. 
The presence of these ducts to the brain hints 
at the inner ear’s ability to regulate the pres-
sure of the inner ear fluids. If the system were 
to create too much endolymph or perilymph, 
there would be some room for expansion. 
The endolymphatic sac could bulge a bit; the 
cochlear aqueduct might allow some pres-
sure relief into the CSF-filled brain cavity.

Arrangement of the  
Semicircular Canals

Each of the three semicircular canals is ori-
ented at right angles to each other. This is 

easier to envision in the sketch of the circles 
superimposed on three of the sides of a cube, 
shown in Figure 24–2.

However, the actual arrangement of 
the semicircular canals is not as simple as 
sketched in Figure 24–2; it is more like that 
in Figure 24–3. The semicircular canals are 
named for their anatomic location. The hori-
zontal or lateral semicircular canal is tilted 
about 30 degrees off horizontal. It is lower in 
the back than in the front (Figure 24–4A). The 
canal that is most anterior also is the high-
est one; thus, this canal is called either the 
superior or the anterior semicircular canal. 
The third canal is named either the inferior 
or the posterior semicircular canal.

Planes of the Canals of the 
right and left ears Are Aligned

As shown in Figure 24–5, the left posterior 
canal and the right anterior canal are both 
angled in the same orientation. The right pos-
terior and left anterior canals also line up. 

figure 24–1. The membranous labyrinth 
includes the scala media of the cochlea, the 
utricle and saccule in the vestibule, and mem-
branous arcs within the semicircular canals. 
Perilymph is found outside the membranous 
labyrinth. There is a stalklike extension of both 
the endolymph-filled membranous labyrinth 
and the perilymph-filled scala tympani. The 
perilymph in the scala tympani connects via 
the cochlear aqueduct to a space in the cra-
nium, filled with cerebrospinal fluid (cSf). The 
membranous labyrinth connects to the endo-
lymphatic duct, which connects to the endo-
lymphatic sac, tucked into the dura mater 
covering the brain. figure modified from © 
2013 Miguel reynel, with permission.

figure 24–2. The three semicircular canals lie 
perpendicular to each other, just as three sides 
of a cube are perpendicular to each other.

Figure 24–2.  The three semicircular canals lie 
perpendicular to each other, just as three sides  
of a cube are perpendicular to each other.

Figure 24–1.  The membranous labyrinth includes 
the scala media of the cochlea, the utricle and 
saccule in the vestibule, and membranous arcs 
within the semicircular canals. Perilymph is 
found outside the membranous labyrinth. There 
is a stalklike extension of both the endolymph-
filled membranous labyrinth and the perilymph-
filled scala tympani. The perilymph in the scala 
tympani connects via the cochlear aqueduct to 
a space in the cranium filled with cerebrospinal 
fluid (CSF). The membranous labyrinth connects 
to the endolymphatic duct, which connects to the 
endolymphatic sac, tucked into the dura mater 
covering the brain. Source: Modified from copyright 
© Miguel Reynel 2013, used with permission.
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location. The horizontal or lateral semicircu-
lar canal is tilted about 30 degrees off hori-
zontal. It is lower in the back than in the front 

(Figure  24–4A). The canal that is most anterior 
also is the highest one; thus, this canal is called 
either the superior or the anterior semicircular 
canal. The third canal is named either the infe-
rior or the posterior semicircular canal.

Planes of the Canals of the Right  
and Left Ears Are Aligned

As shown in Figure 24–5, the right anterior and 
left posterior canals are both angled in the same 
orientation. The acronym RALP is commonly used 
to describe the two canals. The left anterior and 
right posterior canals also line up; this pair goes 
by LARP. Thus, movement of the head in one direc-
tion will cause stimulation in pairs of canals. That 
holds true for the horizontal canals, too. Moving 
the head as if shaking no causes the pair of hori-
zontal canals (right and left) to be stimulated.

Figure 24–3.  The semicircular canals are named 
by their anatomic arrangement. Each canal may 
be known by one of two names. Source: Modified 
from copyright © Miguel Reynel 2013, used with 
permission.

Clinical Correlate: Orienting the Horizontal  
Semicircular Canal

When testing people with dizziness using a test called video-
nystagmography or electronystagmography, there is a portion 
of the test that requires that the horizontal semicircular canal 
be positioned straight up and down. To do this, recline the 
patient into a supine position, and then elevate his or her 
head 30 degrees. This will place the semicircular canal in the 
desired direction (see Figure 24–4).
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Thus, movement of the head in one direc-
tion will cause stimulation in pairs of canals. 
That holds true for the horizontal canals, too. 
Moving the head as if shaking “no” causes the 
pair of the horizontal canals to be stimulated.

clinical correlate: orienting the horizontal 
Semicircular canal

When testing people with dizziness using a test called videonys-
tagmography or electronystagmography, there is a portion of the 
test that requires that the horizontal semicircular canal be posi-
tioned straight up and down. To do this, recline the patient into 
a supine position, and then elevate his or her head 30 degrees. 
This will place the semicircular canal in the desired direction 
(see Figure 24–4).

figure 24–3. The semicircular canals are 
named by their anatomic arrangement. each 
canal may be known by one of two names. 
figure modified from © 2013 Miguel reynel, 
with permission.

figure 24–4. a. orientation of the horizon-
tal semicircular canal in the upright patient. 
B. When supine, the horizontal canal is not 
oriented vertically. c. Tilting the head up 
approximately 30 degrees aligns the horizon-
tal canal straight up and down.

figure 24–5. orientation of the right ante-
rior and left posterior and left anterior and 
right posterior canals are in line. Thus, these 
pairs of canals will be stimulated by the same 
directional head motion.

Figure 24–4.  A. Orientation of the horizon-
tal semicircular canal in the upright patient. 
B. When supine, the horizontal canal is not 
oriented vertically. C. Tilting the head up ap-
proximately 30 degrees aligns the horizontal 
canal straight up and down.
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ANATOMY AND PHYSIOLOGY OF 
THE SEMICIRCULAR CANALS

Structures within the Ampullae of the 
Semicircular Canals

Recall that the cochlea has a membrane covering 
the hair cells (reticular lamina) and that the hair 
cells themselves are bathed in perilymph. The ves-
tibular system’s setup is similar. The movement- 
sensing vestibular hair cells are below a mem-
brane barrier in perilymph; the sensing cell cilia  
will project into the potassium-rich endolymph. 
Collectively, the cells in the ampulla are called 
the crista or crista ampullaris. You will some-
times read that the crista is made up of sensory 
epithelium.

The crista contains hair cells. Just like in the 
cochlea, there are two types of hair cells. They 
are not arranged in the same way, so the terms 
outer and inner would not be appropriate, as the 
two types of cells are mixed together in the same 
locations. We call them type I and type II ves-
tibular hair cells. The type I cells are shaped 
somewhat like a vase with a pinched neck, simi-
lar in shape to the inner hair cells. This shape 

is also called globular. The type II hair cells are 
taller and straighter, like the cochlea’s outer 
hair cells. Both types of cells have cilia on them, 
and when deflected, the cilia will open micro-
channels, allowing potassium into the cell, de
polarizing the hair cells. 

In the cochlea, the cilia of the outer hair cells 
project into the gelatinous tectorial membrane. In 
the ampulla of the semicircular canals, the type I  
and II hair cell cilia project into a gelatinous 
mass called the cupula. The cupula hangs from 
the top of the ampulla, as illustrated in Figure 24–6.

The cupula is essentially floating in endo-
lymph, although it is attached to the roof of the am-
pulla. This means that it can move somewhat when 
the fluid moves. An analogy for this situation is 
the twisting of a Hula-Hoop. When the Hula-Hoop 
spins, the pebbles inside lag behind because of 
their inertia. If viewed from a camera mounted in-
side the Hula-Hoop, the pebbles would appear to 
be moving backward. Rotating the head moves the 
semicircular canals, which are firmly attached to 
the head, which causes the cupulas to lag behind.

The cupula can move only so far: It will hit 
the walls of the ampulla if the movement contin-
ues, for example, if you are on a merry-go-round. 
As you spin and spin on the merry-go-round (at 
a constant speed), the fluid eventually is going 
to catch up to the speed of the body and the 
cupula will float in a relatively neutral position 
again. When you slow down, the fluid will still be 
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Thus, movement of the head in one direc-
tion will cause stimulation in pairs of canals. 
That holds true for the horizontal canals, too. 
Moving the head as if shaking “no” causes the 
pair of the horizontal canals to be stimulated.

clinical correlate: orienting the horizontal 
Semicircular canal

When testing people with dizziness using a test called videonys-
tagmography or electronystagmography, there is a portion of the 
test that requires that the horizontal semicircular canal be posi-
tioned straight up and down. To do this, recline the patient into 
a supine position, and then elevate his or her head 30 degrees. 
This will place the semicircular canal in the desired direction 
(see Figure 24–4).

figure 24–3. The semicircular canals are 
named by their anatomic arrangement. each 
canal may be known by one of two names. 
figure modified from © 2013 Miguel reynel, 
with permission.

figure 24–4. a. orientation of the horizon-
tal semicircular canal in the upright patient. 
B. When supine, the horizontal canal is not 
oriented vertically. c. Tilting the head up 
approximately 30 degrees aligns the horizon-
tal canal straight up and down.

figure 24–5. orientation of the right ante-
rior and left posterior and left anterior and 
right posterior canals are in line. Thus, these 
pairs of canals will be stimulated by the same 
directional head motion.

Figure 24–5.  Orientation of the right anterior and 
left posterior (RALP) and left anterior and right 
posterior canals (LARP) are in line. Thus, these 
pairs of canals will be stimulated by the same 
directional head motion.

Figure 24–6.  Arrangement of structures within the 
ampulla. The hair cells are in the crista and are not 
within the membranous labyrinth, although the hair 
cell cilia project into it. The cupula is a gelatinous 
structure into which the cilia embed.
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moving as the body decelerates, and the cupula 
would be forced in the opposite direction.

Figure 24–7 shows an electron microscope 
cross-section view of an ampulla. The cupula is not 
shown in this figure. It provides a nice illustration 
of the bony versus membranous labyrinths, and 
how the hair cell bodies in the ampulla are sur-
rounded by perilymph. The cilia (not visible in this 
picture) project into the membranous labyrinth. 

Angular Head Motion Directions

The semicircular canals are arranged to detect 
angular motion in any direction. Sometimes these 
motion directions are referred to as yaw, pitch,  
and roll. Yawing is moving around a vertical axis. 
Shaking your head no is an example of this mo-
tion. A boat at anchor in a shifting wind yaws 
back and forth. The horizontal semicircular canals 
would be stimulated with this type of movement. 
A boat crashing through the waves has its bow 
(front) tossed upward and downward; it is said 
to be pitching. Shaking your head yes creates the 
same sort of movement. Looking at Figure 24–5, 
note that both the anterior and posterior canals 
would be partially stimulated by this type of mo-
tion. Rolling is when a boat tips left to right, as 

when a wake from a passing boat hits the side of 
the boat. Repeatedly tilt your head toward your 
shoulder—left ear down to the left shoulder, then 
right ear down to the right shoulder. Again, the 
anterior and posterior canals sense this motion.

Cilia and Kinocilium in the Ampullae

The cilia on a vestibular hair cell look a bit dif-
ferent from those on an auditory hair cell. First, a 
kinocilium—a very tall cilium—exists on vestib-
ular hair cells (both type I and type II). Second, 
the cilia are not neatly in rows—they form a cen-
tral mound. The tallest stereocilia are nearest the 
kinocilium (Figure 24–8).

Just as with auditory hair cells, the adjacent 
cilia are linked together. Deflecting the tallest 
cilia therefore moves the entire bundle. And 
again, as in the auditory system, the movement 
of the cilia will open and close channels in the 
cilia. Moving the stereocilia in one direction (to-
ward the kinocilium) will open the mechanoelec-
trical transduction (MET) channels, allowing po
tassium to enter the cell and excite it. Movement 
in the opposite direction closes the channel and 
slows the neural firing rate. (Vestibular nerve cells, 
like auditory ones, will fire spontaneously without 
stimulation.) 

Figure 24–7.  Scanning microscope view of a  
cross section of an ampulla. Source: Modified  
from Jozeppy26, https://commons.wikimedia 
.org/w/index.php?curid=10253283.

Kinocilium

Figure 24–8.  Illustration of the cilia on top of a 
vestibular hair cell. Hair cells in the vestibular 
system have a tall kinocilium. The cilia are clustered 
together and linked together, so that movement on 
any one part moves the entire bundle.
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