The Hearing Sciences

Third Edition

Editor-in-Chief for Audiology Brad A. Stach, PhD

The Hearing Sciences

Third Edition

Teri A. Hamill, PhD Lloyd L. Price, PhD

Plural Publishing

5521 Ruffin Road San Diego, CA 92123

e-mail: info@pluralpublishing.com Web site: http://www.pluralpublishing.com

Copyright © 2019 by Plural Publishing, Inc.

Typeset in 10.5/13 Garamond by Achorn International Printed in the United States of America by McNaughton & Gunn

All rights, including that of translation, reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, including photocopying, recording, taping, Web distribution, or information storage and retrieval systems without the prior written consent of the publisher.

For permission to use material from this text, contact us by Telephone: (866) 758-7251 Fax: (888) 758-7255 e-mail: permissions@pluralpublishing.com

Every attempt has been made to contact the copyright holders for material originally printed in another source. If any have been inadvertently overlooked, the publishers will gladly make the necessary arrangements at the first opportunity.

Library of Congress Cataloging-in-Publication Data

Names: Hamill, Teri, author. | Price, Lloyd L., author.
Title: The hearing sciences / Teri A. Hamill, Lloyd L. Price.
Description: Third edition. | San Diego, CA : Plural Publishing, [2019] | Includes bibliographical references and index.
Identifiers: LCCN 2017034252| ISBN 9781944883638 (alk. paper) | ISBN 1944883630 (alk. paper)
Subjects: | MESH: Hearing—physiology | Psychoacoustics | Speech Perception | Ear—physiology | Ear—anatomy & histology | Hearing Disorders
Classification: LCC QP461 | NLM WV 272 | DDC 612.8/5—dc23
LC record available at https://lccn.loc.gov/2017034252

Contents

Preface		xxv
Reviewers		xxvii
About the A	Authors	xxix
SECTION (ONE. BASIC ACOUSTICS AND INSTRUMENTATION	
Chapter 1.	Physical Properties of Sound	3
	Energy	3
	Opposing Forces	4
	Units of Measurement	5
	Sound Energy	6
	Compression and Rarefaction	9
	Frequency	10
	Intensity	11
	Limits of Human Frequency Detection	11
	Summary	12
	Review Questions	12
Chapter 2.	Ratios, Logarithms, and Decibels	13
	Why Do We Need The Decibel?	13
	Creating a More Workable Numbering System for Measuring Sound	
	and Hearing	13
	Base 10 Exponents	14
	Expressing Pressure Measurements with Base 10 Exponents	
	and Significant Digits	15
	Adding and Subtracting Numbers in Scientific Notation	16
	Logarithms Are Based On Exponents	16
	Logarithms of Numbers With Only 1 and 0	16
	Logarithms of Numbers Other Than 1 and 0	17
	Why Are Logs and Antilogs Important?	17
	Antilogs	18
	The Log of X Times Y	18
	Log of (X Divided by Y)	18
	Hints on Using the Calculator	18
	Obtaining the Log of a Number That Is Raised to a Power	18
	The Decibel	19
	Power	19
	Doubling Power	20
	Pressure	20
	Doubling Power Does Not Double Pressure	22
	Doubling the Distance from the Source	22
	More Practice at Calculating Sound Pressure Levels	23
	More Practice at Calculating Intensity Levels	23

	Relative Powers and Pressures	24
	Adding Decibels	25
	Summary	26
	Review Questions	26
Chapter 3.	Further Examination of Properties of Sound	27
	Speed of Sound Transmission	27
	Wavelength	28
	Period	28
	Relationship of Period and Wavelength	29
	Sound Transmission Effects	30
	Diffraction and Reflection	30
	Sound Absorption, Transmission Loss, and Reverberation Time	32
	The Doppler Effect	32
	Sonic Booms and Thunder Temperature Changes Affect Speed of Sound	33
	Temperature Changes Affect Speed of Sound Wind Effects	33 34
	Types of Decibel Scales	34
	Review of dB SPL and dB IL	34
	dB Increase	35
	dB HL and dB SL	35
	Introduction to the Audiogram	36
	Summary	37
	Review Questions	37
Chapter 4.	The Sine in Sine Waves, Other Types of Sound Waves,	
	and Introduction to Filters and Frequency Analysis	39
	Triangles and Sines	39
	Plotting Sine Waves	41
	Simple Harmonic Motion, the Pendulum, and the Circle	42
	Molecular Vibration and the Sine Wave	43
	How We Calculate Sine Wave Relative Amplitude When Phase Is	
	Known (or Calculated)	45
	How We Calculate Sine Wave Phase When Time and Frequency	
	Are Known	46
	Review Questions	46
	Velocity and Acceleration	46
	Phase Relationships of Particle Displacement, Velocity, and Acceleration	46
	Complex Sound	47
	Summing Pure Tones That Differ Only in Phase or Amplitude	47
	Summing Pure Tones That Differ in Frequency Harmonics and Distortion Products	48 52
	Harmonic Distortion	52 52
	Other Distortion Tones	52 52
	Air Molecule Vibration Patterns for Complex Sounds	53
	Fourier's Theorem	53
	Common Types of Tones and Noise	55
	Square, Triangular, and Sawtooth Waves	55
	1 ,	

	Amplitude and Frequency Modulating Pure Tones	55
	White and Pink Noise	57
	The Click (Transient) Signal	59
	Waveform Rise and Fall Envelopes	61
	Introduction to Filtering	63
	Summary	65
	References	66
	Additional Review Questions	66
Chapter 5.	Impedance, Energy Transfer, and Resonance	67
	Impedance	67
	Mass and Stiffness Forces are 180 Degrees Out of Phase	68
	Formula for Impedance	69
	The Meaning of Impedance (Z)	70
	The Meaning of Phase Angle	71
	Impedance of a Medium	72
	Alternative Formula for Impedance	73
	Acoustic Admittance	74
	Energy Transfer	74
	Resonance of Systems	76
	Standing Waves and Resonance of Tubes	77
	Standing Waves	77
	Resonance of a Tube Closed at One End	79
	Why a Glass Beer Bottle Resonates When You Blow Across	
	the Top, but a Plastic Soda Bottle Not So Much	83
	Resonance of a Tube Closed at Both Ends	83
	Summary	84
	References	84
	Review Questions	84
Chapter 6.	Electricity and Analog Systems	87
	Electron Flow	87
	Ohm's Law	90
	Electrical Circuits	91
	What Is Alternating Current (AC) Electricity?	92
	How is AC Sound Created by an AC-Powered Amplifier Circuit? Is It	0.0
	Different Than in a DC-Powered Amplifier?	92
	Ion Flow	93
	Introduction to Common Analog Components	93
	Microphones	93
	Amplifiers	94
	Filters	94
	Calculating Filter Cutoff Frequencies	95
	Cutoff Frequencies Defined at 3-dB Down Points	96
	Speakers Transducers	96 06
	Volume Controls	96 07
	Frequency Response Controls	97 97
		9/

	Summary	97
	Review Questions	97
Chapter 7.	Digital Systems and Digital Signal Processing	99
	Bits and Sampling Rates	99
	How Big Is That?	99
	How Often Should Amplitude Be Measured?	100
	Building an Analogy to Use Later	101
	Additional Digitization Concepts	101
	Analog to Digital Converters	101
	Nyquist Frequency	101
	Aliasing	102
	Anti-Aliasing Filtering	102
	Digital to Analog Converters	103
	Imaging	103
	Anti-Imaging Filters	103
	Overview of What a Digital System Can Do	103
	Fast Fourier Transform (FFT) Analysis of Auditory Signals	104
	Windowing	104
	Overlapping Windows	107
	Goal of FFT Analysis FFT Resolution	107 108
	Example FFT Results	108
	Digital Noise in the FFT Analysis	110
	Calculating Noise per Bin and Decibel of Bandwidth per Bin	110
	Time-Domain Signal Averaging	111
	Hearing Aid Digital Noise Reduction	112
	Summary	115
	Review Questions	116
Chapter 8.	Equipment Used in Audiology and Hearing Science	119
-	Audiometers	119
	Signal Generators	121
	Sound Booths	123
	Immittance Devices (Middle Ear Analyzers)	124
	Tympanometers	124
	Measurements of Middle Ear Absorption and Reflectance	128
	Acoustic Stapedial Reflex Measurement	129
	Otoacoustic Emission Devices	129
	Spontaneous Otoacoustic Emission Measurement	129
	Transient-Evoked Otoacoustic Emission Measurement	130
	Distortion-Product Otoacoustic Emission Measurement	130
	Signal Processing Used in Analysis of All Types of Otoacoustic	
	Emission Measurements	131
	Auditory Evoked Response Measurement Systems	132
	Common Mode Rejection	132
	Time-Domain Signal Averaging and Artifact Rejection	133
	Filtering the Evoked Response	134
	Hearing Aid Analyzers	134

Real-Ear Measurement Systems	137
Speech Mapping Technology	137
Original Real-Ear Testing	139
Components: Detailed Information	139
Review of Current: Alternating Current (AC) and Direct Current (DC)	139
What Is a Conductor, an Insulator?	139
Semiconductors	140
"Doping" Silicon to Make it More or Less Likely to	
Take/Give Electrons	140
Diodes	141
Transistors	142
How a Transistor Acts As an Amplifier	143
How a Transistor Acts As a Switch	144
Resistors and Resistance in Circuits; More on Ohm's Law	144
Resistor Appearance and Coding	144
Ohm's Law Review	145
Resistors in Series	145
Resistors in Parallel	146
Batteries in Series and in Parallel	146
Capacitors	147
Review of Alternating Current (AC) and Direct Current (DC)	147
Capacitors Block Direct Current, Pass Alternating Current	147
Inductors	148
Power Supplies for Hearing Instruments and Testing Equipment:	
Safety Concerns and Electronic Noise	148
Relative Safety of AC and DC Power Supplies	148
Grounding Equipment, Fuses, and Circuit Protectors	148
Regulated Power Supplies and Power Conditioners	150
Surge Protectors/Spike Arrestors	151
Arc Fault Circuit Interrupters	151
Ground Noise	151
Floor Noise	152
Microphones	152
Types of Microphones	152
Microphone Directionality	153
Microphone Care	154
Sound Level Meters	156
Calibration of Sound Level Meters	157
Types of Decibel Scales	158
Sound Level Meter Response Times	160
Decibel Range Selection	161
Earphone Couplers	161
Calibration of Audiometer Output Level: Reference Equivalent	
Threshold Sound Pressure Levels	161
Frequency Counters	162
Audiometer Calibrators	162
Oscilloscopes	162
Summary	164
Review Questions	165

SECTION TWO. INTRODUCTION TO SPEECH ACOUSTICS

Chapter 9.	Classification of Speech Sounds	171
	Consonants, Vowels, and Dipthongs	171
	Consonants Are Categorized By Place of Articulation, Manner of	
	Articulation, and Voicing	171
	Alveolar Sounds	172
	Palatal Sounds	173
	Glottal Sound	173
	Velar Sounds	173
	Linguadental Sounds	174
	Bilabial Sounds	174
	Labiodental Sounds	175
	Vowels Differ in Tongue Height, Placement, Tension, and Lip Rounding	175
	Front Vowels	175
	Central Vowels	175
	Back Vowels	176
	Summary	176
	Review Questions	177
Chapter 10.	Acoustics of Speech	179
	How Speech Sound Waveforms Can Be Viewed	179
	Fundamental Frequency, Glottal Pulses, Harmonics, and Format Frequencies	182
	Acoustic Characteristics of Vowels	183
	Formant Frequencies Are Created by Resonance of the Vocal Tract	183
	F1 and F2 of Vowels	184
	Intensity of Vowel Sounds	184
	Low Importance of Vowels for Speech Understanding	185
	Acoustic Characteristics of Consonants	185
	Stop Consonants Contain Wideband Energy	185
	Voice Onset Time Distinguishes Voiced and Unvoiced Sounds	186
	Formant Frequency Transitions Provide Additional Acoustic Cues	186
	Fricatives Have Longer Duration and More High-Frequency Energy	187
	Affricatives Have Characteristics of Both Plosives and Fricatives	187
	Nasals Have Low-Frequency Energy (Nasal Murmur) and Antiresonances	187
	Glides Are Characterized by Vowel Formant Transitions	190
	Intensity of Consonants	191
	Importance of Consonants for Speech Understanding	192
	Summary	192
	Reference	193
	Review Questions	193

SECTION THREE. ANATOMY AND PHYSIOLOGY OF THE EAR

Chapter 11.	Overview of Anatomy and Physiology of the Ear	197
	Anatomic Terms for Location	197
	Anatomic Views	197

	General Sections of the Ear	199
	The Temporal Bone	200
	Lobes of the Brain	200
	Overview of Physiology	201
	Summary	202
	References	202
	Review Questions	202
Chapter 12.	Introduction to the Conductive Mechanisms	203
	The External Ear	203
	The Middle Ear	204
	The Tympanic Membrane	205
	The Middle Ear Space	206
	The Ossicles	207
	Overview of How Middle Ear Ossicular Motion Permits Hearing	207
	Middle Ear Muscles	207
	The Eustachian Tube	207
	Medial Wall	208
	Posterior Wall	208
	The Lateral or Tympanic Wall	209
	Anterior Wall	210
	Superior Wall	210
	Inferior Wall	210
	Summary	211
	Review Questions	211
Chapter 13.	Introduction to the Physiology of the Outer and Middle Ear	213
	Resonances of the External Ear	213
	Energy Transfer through the Middle Ear	214
	Impedance Mismatch between Air and Cochlear Fluids	214
	The Middle Ear as an Impedance-Matching Transformer	214
	Ossicular Lever	214
	Areal Ratio	216
	The Acoustic Reflex	217
	Summary	219
	References	219
	Review Questions	219
Chapter 14.	Bone-Conduction Hearing	221
	Bone-Conduction Mechanisms	221
	Skull Vibration: Distortional Aspect of Bone-Conduction Hearing Introduced	221
	Inertial Aspects of Bone Conduction	222
	Further Discussion of the Distortional Aspects of Bone Conduction	222
	Osseotympanic Aspects of Bone Conduction: Bone Conduction	
	by Air Conduction	223
	Hearing Is Tested by Air and Bone Conduction	224
	Bone Conduction by Air Conduction (Osseotympanic Bone Conduction)	
	and the Occlusion Effect	224

	Summary	228
	References	228
	Review Questions	228
Chapter 15.	Advanced Conductive Anatomy and Physiology	229
	Pinna	229
	Embryologic Development	229
	Landmarks	229
	Physiology of the Pinna	231
	External Auditory Meatus	232
	Detailed Anatomy	232
	Proximity of the Temporomandibular Joint	234
	Proximity of Nerves to the External Auditory Meatus	234
	Skin of the External Auditory Meatus	235
	Cerumen	235
	Detailed Physiology of the External Auditory Meatus	236
	Tympanic Membrane	239
	Slant and Cone Depth	239
	Third Impedance Matching Transformer Mechanism	239
	Detailed Study of the Ossicular Chain	240
	Resonance of the Middle Ear	241
	Mass and Stiffness of the Middle Ear Affect Sound Transmission	
	Differently at Different Frequencies	241
	Pathology Changes Middle Ear Sound Transmission	243
	Acoustic Reflex Physiology	246
	Reflex Latency	246 246
	Reflex Adaptation Reflex Threshold	240 247
		247 247
	Summary References	247 248
		248 248
	Review Questions	240
Chapter 16.	Introduction to the Sensory Mechanics	249
	The Bony Labyrinth	249
	The Membranous Labyrinth	250
	The Cochlor	250
	The Cochlea	251
	Structures within the Cochlea Gross Structures	252
	Fine Details of Features in the Cochlea	252
		252 254
	Mass and Stiffness Differences along the Basilar Membrane Peview of How the Datailed Features Fit Within the Larger Picture	254 255
	Review of How the Detailed Features Fit Within the Larger Picture Cochlear Blood Supply	255 256
	Innervation of the Cochlea	250 257
	Summary	257 258
	References	258 259
	Review Questions	259
	Action Questions	239

Chapter 17.	Advanced Study of the Anatomy of the Cochlea	261
-	Hair Cell Height and Number	261
	Stereocilia and Their Tip Links and Side Links	262
	Supporting Cells	263
	Chemical Composition of Endolymph and Perilymph	265
	Comparative Electrical Charges of Fluids in the Cochlea	265
	Potassium Influx Regulates Calcium Coming Into Hair Cells	266
	Ion Changes in the Hair Cell and Circulation of Ions	266
	Neurotransmitter Release	269
	Summary	269
	Review Questions	270
Chapter 18.	Introduction to Cochlear Physiology	271
	Arrangement of the Cilia Relative to the Tectorial Membrane	271
	Mass/Stiffness Gradient of the Basilar Membrane	272
	Review of Divisions and Membranes within the Cochlea	273
	The In-and-Out Motion of the Stapes Footplate Becomes an	
	Up-and-Down Motion of the Basilar Membrane, Called the	
	Traveling Wave	275
	The Location of the Maximum Place of Movement on the Basilar	
	Membrane Is Determined by the Sound Frequency	276
	An Unfortunate Untwisting of Fate	277
	The Height of the Traveling Wave Envelope Is Related to Sound	
	Intensity	277
	Ciliary Shearing	278
	Returning to the Concept That the Up-and-Down Basilar Membrane	
	Motion Creates Side-to-Side Shearing of the Hair Cell Cilia	278
	Shearing of Cilia Opens Microchannels (Mechanoelectrical Transduction	
	Channels) in the Cilia and Creates Chemical Changes in the Hair	
	Cell Body	279
	The Outer Hair Cell Active Mechanism Enhances the Motion of the	
	Inner Hair Cell Cilia	279
	Hearing Requires Inner Hair Cell Stimulation	281
	Summary	281
	Reference	282
	Review Questions	282
Chapter 19.	More Hair Cell Physiology	283
	Calcium and Potassium Channels, Prestin, and Active Cilia	283
	Review of Cellular Chemistry Changes	283
	Prestin Protein Contraction Creates the Active Mechanism	284
	Hair Cell Cilia Also Appear to Have Active Properties	284
	Tip Links and MET Channels in Outer and Inner Hair Cell Stereocilia	286
	Otoacoustic Emissions Are Sounds that Come from the Cochlea as a	
	Result of the Active Mechanism(s) of the Outer Hair Cells	286
	Are Cilia Responsible for Otoacoustic Emissions?	287
	What Are the Places on Basilar Membrane for Creation of the	
	Otoacoustic Emission?	287

	Prestin Knockout Mice	289
	Tip Links and Insertion Plaques: Slow Cilia Adaptation	289
	Apoptosis: a Better Way for Hair Cells to Die	293
	Reactive Oxygen Species	293
	Antioxidants	294
	Melanin to the Rescue	294
	How the Traveling Wave Is Altered by the Active Mechanism	
	of the Cochlea	294
	Two-Tone Suppression Is Related to the Active Mechanism	295
	Summary	296
	Reference	298
	Review Questions	298
Chapter 20.	Overview of Cochlear Potentials and the Auditory	
	Nervous System	301
	Chemical Changes in the Hair Cells and Neurons	301
	The Cochlear Microphonic	301
	The Summating Potential	302
	Action Potentials	303
	Pattern of Neural Firing Encodes Frequency and Intensity	305
	The Primary Afferent Auditory Pathway	305
	Location of Afferent Neuron Dendrites	305
	Course of the VIIIth Nerve	307
	Cerebellopontine Angle	307
	Nuclei	307
	Primary Auditory Cortex	310
	Introduction to Efferent Neurons	310
	Summary	311
	References	312
	Review Questions	312
Chapter 21.	Advanced Study of Cochlear and VIIIth Nerve Potentials	315
	Characteristic Frequency	315
	Cochlear Resting Potentials	315
	Endocochlear Potential	316
	Intracellular Potentials	316
	Cochlear Receptor Potentials	316
	Cochlear Microphonic	316
	Summating Potential	317
	Comparison of the Tuning of the Cochlear Microphonic and the	
	Summating Potential	318
	Summary of Cochlear Microphonic and Summating Potential	318
	Action Potentials	319
	Electrical Potentials in Neurons	319
	N1 and N2 Responses of the VIIIth Nerve	321
	Refractory Period	322
	Spontaneous Discharge Rates	323
	Threshold of Neural Firing Is Related to Spontaneous Discharge Rate	323
	Firing Rates Are Influenced by Efferent Innervation	324

	Pure-Tone Frequencies and Intensities That Cause a Neuron to Fire	
	Faster Than Spontaneous Rate	324
	Upward Spread of Masking: Masking of One Stimulus by a Second Stimulus	325
	Neural Tuning Curves	327
	How Tuning Curves Are Obtained	327
	Q _{10 dB} Calculations Describe Width of Tuning Curve Tips	330
	Summary	331
	References	331
	Review Questions	331
Chapter 22.	How Frequency and Intensity Information Are Encoded	333
	The Neural Action Potential	333
	Cell Membrane Characteristics	333
	How the Action Potential Is Initiated	334
	Propagation of the Action Potential Down the Axon	334
	Rate of Firing of One Neuron Increases as the Stimulus Frequency	
	Approaches the Characteristic Frequency	335
	Different Combinations of Frequency and Intensity Can Create the Same	
	Overall Number of Neural Discharges per Second	336
	Problems with the Theory that Frequency Is Encoded by Rate of Discharge	337
	Pattern of Neural Discharge Encodes Frequency and Intensity	338
	Additional Information Is Obtained from Early and Late Neural Firings	339
	Period Interval Histograms: Histograms Obtained with Pure-Tone Stimulation	340
	Review of the Response of the VIIIth Nerve to Pure Tones	341
	Limits of a Neuron's Phase-Locking Ability	342
	Peristimulus Time Histograms for Longer Duration Tone Segment	343
	Whole Nerve Potentials Reveal Signal Intensity	344
	Masking of One Sound by a Second Sound	346
	Two-Tone Suppression	346
	Response of the VIIIth Nerve to Complex Signals	348
	Poststimulus Time Histograms Obtained When Stimulating the Ear	2 (2
	with Clicks and the Concept of Preferred Intervals	349
	Response of Multiple Neurons of the Same Characteristic Frequency Neural Encoding at Cochlear Nucleus and Higher Central Auditory	351
	Nuclei	351
	Neural Cell Types (Appearance) in the Central Nervous System	351
	Multiple Inputs to a Higher-Order Neuron Allows Alteration of	
	Its Response Characteristics	351
	Coincidence Detectors Improve Phase-Locking	352
	Neurons May Be Excited by Differing Frequency Inputs	353
	Peristimulus Time Histograms of Higher-Order Neurons	353
	What Does the Variability in Cell Morphology, Tuning, and Neural	
	Discharge Patterning Mean About Speech Encoding?	354
	Encoding of Information Necessary for Sound Localization	
	and Lateralization	354
	Superior Olivary Complex Neurons Respond to Binaural Differences	355
	Superior Olivary Complex Allows for Sound Fusion	357
	Nuclei Are Tonotopically Organized	357
	Nuclei Superior to Superior Olive	357

	The Auditory Cortex	357
	Summary	359
	References	360
	Review Questions	360
Chapter 23.	The Efferent Auditory System	363
	Olivocochlear Bundle	363
	Medial Efferent System	364
	Lateral Efferent Systems	364
	Crossed and Uncrossed Efferent Fibers	364
	Effect of Activation of the Efferent System	365
	Medial Efferent System Activation	365
	Lateral Efferent System Activation	365
	Memory Aids	366
	Other Efferent Pathways	366
	The Acoustic Reflex	366
	Stapedial Reflex Pathway	366
	Effect of Stapedial Reflex Contraction	367
	Role of Tensor Tympani	368
	Acoustic Reflexes Elicited by Nonauditory Stimuli	368
	Summary	369
	Review Questions	369
Chapter 24.	Introduction to Peripheral Vestibular Anatomy and Physiology	371
	The Vestibular System: Bony and Membranous Labyrinths	371
	Arrangement of the Semicircular Canals	372
	Planes of the Canals of the Right and Left Ears Are Aligned	373
	Anatomy and Physiology of the Semicircular Canals	374
	Structures within the Ampullae of the Semicircular Canals	374
	Angular Head Motion Directions	375
	Cilia and Kinocilium in the Ampullae	375
	Direction of the Endolymph/Cupula Movement That Is Excitatory	376
	The Utricle and the Saccule	377
	Hair Cells of the Utricle and Saccule	377
	Vestibular Branch of the VIIIth Nerve	379
	Summary	379
	Reference	381
	Further Reading	381
	Review Questions	381
Chapter 25.	Introduction to Central Vestibular Anatomy and Physiology	383
	Functions of the Balance System	383
	Awareness of Head Position	384
	The Vestibulo-Ocular Reflex	384
	Ewald's First Law	385
	Muscles Controlling Eye Movements	385
	Cranial Nerves of the Extraocular Muscles	385
	Pathways From the Vestibular Nucleus to the Nerves Controlling	
	Eye Movement	386

	Neural Control of Eye Deflection During Head Turn	386
	Limited Range of Eye Deflection	<i>3</i> 87
	Nystagmus: Repeated Slow Drift, Rapid Saccadic Return Motion	<i>3</i> 87
	Introduction to Ewald's Second Law	388
	Summary of the Vestibulo-Ocular Reflex and Introduction to	
	Videonystagmography Testing	388
	Velocity Storage	389
	Reflexes of the Balance System for Postural Control	390
	Vestibulospinal Reflex	390
	Cervico-Ocular Reflex	390
	Cervicospinal and Cervicocollic Reflexes	390
	Vestibulocervical and Vestibulocollic Reflexes	392
	Summary of the Functions of Balance and Clinical Implications	392
	Summary	396
	Review Questions	397
Chapter 26.	Advanced Vestibular Anatomy and Physiology	399
	Size of the Vestibular System	400
	Endovestibular Potentials	400
	Frequency in the Vestibular System	401
	The Vestibulo-Ocular Reflex in Response to Head or Body Rotation:	
	Superimposed Nystagmus Beats	401
	Frequency in Caloric Testing	404
	Morphology of the Hair Cells of the Crista Ampullaris	406
	Is There an Active Mechanism in the Vestibular System?	407
	Characteristics of the First-Order Vestibular Neurons	407
	Calyx, Bouton, and Dimporphic Neurons	407
	Characterization of Neurons by Diameter	408
	Neural Firing Rates and Patterns	408
	Peripheral Areas of the Ampulla Encode Low-Frequency Stimulation	409
	Afferent Neurotransmitters	409
	Bidirectional Change in Firing Rate of Afferent Neurons	409
	Efferent Innervation of the Crista Ampullaris	410
	Detailed Study of Eye Muscle Attachments	411
	Review of the Eye Muscles	411
	Eye Movement from Superior/Inferior Obliques and Superior/	111
	Inferior Recti: Not Exactly As Expected From the Diagrams	411
	Influence of the Canals	412
	Tonic Contraction in the Absence of Movement, Head Movement	410
	Alters Contraction Strength	412
	Analogy of a Catamaran	413
	Horizontal Canal Control of Eye Movement	413
	Vertical Semicircular Canal Mediated Control of Eye Movement Left Posterior Canal	416 416
	Right Posterior Canal Left Anterior Canal	417 417
	Right Anterior Canal	417 418
	Semicircular Canal Neural Connections	418
	Review of Gross Vestibular Neural Anatomy	419
	Action of 01055 resubular metral Allatolity	719

Excitatory and Inhibitory Responses in the Second-Order Vestibular	
Neurons	419
Connection to the Cranial Nerves That Control Eye Movement	419
Macula and Its VOR Pathways	425
Review of the Structure and Function of the Macula of the Utricle	
and Saccule	425
The Otoconia Cause the Macula to Sense Gravity and Respond to	
Head Tilt	426
Connections Between Utricle and Extraocular Muscles	427
Connections Between the Saccule and Extraocular Muscles	427
Type I and Type II Hair Cells of the Macula	428
Neural Plasticity in the Central Vestibular System	428
Summary	428
References	429
Review Questions	429

SECTION FOUR. BASIC PSYCHOACOUSTICS

Chapter 27. Introduction to Psychoacoustics	433
Threshold (in Decibel Sound Pressure Level) for Pure Tones Depends	
on Frequency	434
Two Ears Are Better Than One	435
Under Ideal Circumstances, a Person Can Detect a 1-dB Intensity	
Change	436
In General, a 10-dB Increase in Intensity is about a Doubling of	
Loudness (Some Studies Say 6 dB)	436
Loudness Grows a Bit Differently in the Low Frequencies:	
An Introduction to Phon Curves	436
Pitch	437
When Is a Pure Tone Tonal?	437
Detecting Change in Pitch	437
Doubling Frequency Creates a Musical Sameness But Not a	
Doubling of Pitch	438
Masking	438
Upward Spread of Masking	439
Critical Bands	439
Temporal Processing	440
Sounds Are Louder and More Tonal if at Least One-Quarter-	
Second in Duration	440
Temporal Order Detection	440
Gap Detection	441
Summary and Implications for Speech Perception	441
Review Questions	441
Chapter 28. Classical Psychoacoustical Methodologies	443
Classical Psychoacoustical Methods	444
Method of Limits	444
Effect of Instruction, Motivation, and Willingness to Guess	444

	Response Latency and False Positive Responses	445
	Effect of Using Increasing Versus Decreasing Intensity Runs	446
	Method of Adjustment	446
	Similarity of Results of Method of Adjustment and Method	
	of Limits	448
	Method of Constant Stimuli	450
	Number of Trials and Step Size	450
	Introduction to Forced-Choice Methods	450
	Threshold Is Not 50% Correct Identification in a <i>n</i> -Interval	
	Forced-Choice Procedure	452
	Introduction to Signal Detection Theory	452
	Adaptive Procedures	453
	Scaling Procedures	453
	Magnitude Estimation	453
	Magnitude Production	453
	Fractionation	454
	Cross-Modality Matching	454
	Summary	454
	Reference	454
	Review Questions	455
Chapter 29.	Signal Detection Theory and Advanced Adaptive Approaches	457
	Signal Detection Theory	458
	Understanding "Magnitude of the Sensory Event"	458
	Signal-Plus-Noise Perception	459
	Criterion Points for Decision Making, and How Hit and Correct-	
	Rejection Percentages Reveal Spacing Between the Noise	
	and Signal-Plus-Noise Distributions	460
	Altering Subject Criteria in Signal Detection Theory and Receiver	
	Operating Curves	465
	The Magic of d'	465
	Adaptive Methods to Determine the Signal Level that is Correctly	
	Detected a Given Percentage of the Time	468
	Change the Rules for When to Increase/Decrease Magnitude in	
	Order to Estimate Different Percent Correct Points	469
	Example of Rules Used to Find Threshold in a Three-Alternative	160
	Forced-Choice Experiment	469
	Adaptive Procedures Can Be Used to Obtain the Response	(= 0
	Function Curve	470
	Disadvantage to a Block Up-Down Procedure	471
	Interleaving Runs	471
	Parameter Estimation by Sequential Testing	472
	Gridgeman's Paradox	472
	Preference Testing in Hearing Aid Customization	472
	Paired Comparisons	473 474
	Summary Reference	474
	Further Reading	474
	Review Questions	474
	Neview Questions	4/4

Chapter 30.	Threshold of Hearing, Loudness Perception, Just Noticeable	
	Difference for Loudness and Loudness Adaptation	477
	Absolute Threshold of Hearing	478
	Minimal Audible Pressure and Minimal Audible Field	478
	Binaural and Equated Binaural Thresholds	480
	Effect of Stimulus Duration on Absolute Threshold	481
	Effect of Stimulus Repetition Rate	481
	Difference Threshold for Intensity (DLI)	482
	Spectral Profile Analysis	484
	Loudness Perception	485
	Loudness Level	486
	Decibel Scales Revisited	486
	Loudness Scaling	487
	Loudness Adaptation	489
	Temporary Threshold Shift	490
	Summary	491
	References	491
	Review Questions	492
Chapter 31.	Calculating Loudness	495
	Physiologic Correlates of Loudness and Loudness Growth	495
	The Transfer Function of the Ear	495
	Active Mechanism Less Effective at Low Frequencies	497
	Role of the Active Mechanism for Varying Intensity Level Sounds	497
	Spread of Activity along the Basilar Membrane	498
	Calculating Loudness of Pure Tones	498
	Complex Tone Loudness	499
	Summary	500
	References	500
	Review Questions	501
Chapter 32.	Basics of Pitch Perception	503
-	Pitch Perception	503
	Limits of Tonal Perception	503
	Pitch Perception Is Intensity Dependent	504
	Pitch Perception Is Duration Dependent	504
	Pitch Scaling	504
	The Mel Scale of Pitch (and Other Pitch Scales)	504
	Octave Scales	507
	Bark Scale	507
	Just Noticeable Difference of Frequency	510
	Changes in DLF with Frequency	511
	Changes in DLF with Intensity	513
	Make Sure You are Measuring a DLF and Not a DLI!	513
	Perception of Two Tones and of Distortions	514
	Beats and Simple Difference Tones	514
	Aural Harmonics, Summation Tones, and Other Difference Tones	514
	Summary	515
	References	516
	Review Questions	516

Chapter 33.	Introduction to Masking	517
	Tone-on-Tone Masking	517
	Critical Bands	520
	Summary	522
	Reference	522
	Review Questions	523
Chapter 34.	More About Masking and Cochlear Frequency Distribution Masking Pure Tones With White Noise and Narrowband Noise:	525
	Critical Bands and Critical Ratios	525
	Level per Cycle Calculations	525
	Critical Bands in Hz and in Decibels	527
	A Critical Band Is Also Called a Bark	527
	How Critical Bands Vary With Frequency	528
	Fletcher's Theory of Critical Ratio	528
	Equivalent Rectangular Bandwidths	529
	Other Ways to Evaluate Critical Bands	530
	Cochlear Maps From Critical Bands	532
	The Relationship Between DLF, Critical Ratios, and Equivalent	
	Rectangular Bandwidths	533
	Comodulation Release From Masking	534
	Remote Masking	535
	Summary and Some Further Analysis	537
	References	538
	Review Questions	538
Chapter 35.	Psychophysical Tuning Curves	539
	Psychophysical Tuning Curves (PTCS)	539
	How PTCs Are Obtained and Interpreted	539
	Correlation to Traveling Wave Locations	540
	Families of PTCs	540
	Tips, Tails, and Q _{10 dB} s	540
	Neural Tuning Curves Revisited	541
	The Link Between PTCs and Neural Tuning Curves	542
	Summary and a Confession	542
	Review Questions	542
Chapter 36.	Temporal Processing	545
	Review of Temporal Integration for Threshold-Level Stimuli	545
	Review of Duration Effects on Pitch Perception	545
	Gap Detection	546
	Gap Detection Ability Is a Function of Frequency	546
	Gap Detection Ability Is Related to the Auditory Filter Bandwidth Detection of Gaps in White Noise Uses the High-Frequency	546
	Cochlear Filters	549
	Temporal Successiveness	549
	Temporal Discrimination	550
	Temporal Discrimination Relates to Distinguishing Voiced From	
	Unvoiced Consonants	550
	Temporal Modulation Transfer Functions	551

	Summary	551
	References	552
	Review Questions	552
Chapter 37.	Temporal Masking	553
	Forward Masking: Masker Comes Before Probe Signal	553
	Magnitude of the Effect	553
	Physiologic Explanations	554
	Forward Masking Psychophysical Tuning Curves Are Sharper	554
	Backward Masking: Masker Follows Probe Signal	554
	Magnitude of the Effect	554
	Physiologic Explanation	554
	Summary	555
	Reference	555
	Further Reading	555
	Review Questions	555
Chapter 38.	Binaural Hearing	557
	Binaural Summation	557
	Improved DLI and DLF Ability Binaurally	557
	Binaural Beats	558
	Central Masking	558
	Binaural Fusion	558
	Localization	559
	Temporal Cues to Localization	559
	Intensity Differences	560
	Combined Effect of Intensity and Phase Differences	561
	Central Nervous System Cells Are Responsive to Phase or Intensity	
	Differences	561
	Lateralization	562
	Interaural Time Difference	562
	Interaural Intensity Differences	562
	Combined Effects of Intensity and Phase	563
	Why Is Lateralization a Different Phenomenon from Localization?	564
	Masking Level Differences	564
	Summary	565
	References	565
	Review Questions	565
Chapter 39.	Introduction to the Results of Psychoacoustical Assessment of Persons	
	With Hearing Impairment	567
	Effect of Hearing Loss on Audibility of Tones and Speech	567 567
	Effect of Loss Type and Severity	567
	Loss of Sensitivity for Pure Tones Predicts Loss of Speech	=(0
	Perception Ability Articulation Indox Predictions of Speech Understanding Are Imperfect	569 571
	Articulation Index Predictions of Speech Understanding Are Imperfect	571
	Cochlear Loss Causes Recruitment	572
	Difference Limens for Intensity Threshold Temporal Summation Effects	573
	Threshold Temporal Summation Effects	573

	Widened Psychophysical Tuning Curves	574
	Cochlear Dead Regions	575
	Off-Frequency Listening	575
	Audiometric Characteristics of Dead Regions	575
	What Is Perceived When Off-Frequency Listening Occurs?	576
	Psychophysical Tuning Curves for Dead Regions	576
	Threshold Equalizing Noise (TEN) Test	576
	Enhanced DLFs Near Dead Regions?	578
	Amplification for Those With Dead Regions	578
	Gap Detection Thresholds	579
	Results With White Noise Stimuli	579
	Gap Detection Results for Pure Tones Depend on Stimulus	
	Intensity Levels	579
	Gap Detection Levels Should Theoretically Be Better in Hearing-	
	Impaired Persons	580
	Temporal Modulation Detection Ability Is Good If the Signal Is	
	Fully Audible	580
	Ability to Detect Very Fast Signal Changes in Frequency and Amplitude	
	Is Poorer Than for Normal Hearers	581
	Poorer Pitch Perception Abilities	581
	Failure to Take Advantage in Pauses in Interrupted Noise	581
	Summary	582
	References	583
	Further Reading	583
	Review Questions	583
Appendix	A. The Math Needed to Succeed in Hearing Science	587
Appendix	B. Answers to Review Questions	595
Index		615

Preface

This text provides resources to guide the student in all areas of hearing science: acoustics, instrumentation, anatomy/physiology, and psychoacoustics. It also provides a brief introduction to speech acoustics. Introductory/intermediate chapters are intended for introductory courses in hearing science. The advanced chapters are suitable for doctoral courses in audiology. The professor can select from among the introductory chapters as he or she feels appropriate for introductory courses, or more advanced chapters in order to introduce topics within doctoral courses in hearing science. The later introductory chapters require only material from other introductory chapters, and similarly one can read and understand intermediate chapters without having read any of the advanced chapters. At the end of this Preface is a breakdown of which chapters have which level of information.

Our goal was to create a very readable text. We endeavored to explain concepts as simply as possible.

Some books are reference texts-they present an idea concisely and have information in one and only one location. They are great resources for reviewing information already learned. Some books are instructional texts, and this is one of them. We assume that the reader has no prior exposure to the information. If the novice reads a reference text, there will likely be times when he or she thinks "I'm not sure I understand." When this happens to professionals learning new information, they search out different articles and books to expand their understanding. The student who has paid a high price for a textbook and does not yet know where to find, or has limited access to, other texts finds this frustrating. This book is to attempt to present information clearly and to repeat that information when presenting more detailed information. The intentional redundancy in the more advanced chapters allows them to serve as reference chapters for students who have already learned the more basic information.

Learning theory says that repetition (e.g., reading information more than one way and both hearing and reading) increases retention, but recall practice is much more effective. The reader is encouraged to attempt to predict summaries. Chapters include review questions to practice recall. The website www.audstudent.com has a resources section that provides additional review questions and supplemental materials.

The hearing sciences are interesting but not necessarily easy. We hope this text with its somewhat colloquial writing style and repetition of key information facilitates mastery of the topic.

Although we think the hearing sciences are intrinsically interesting, we know that some students have a strong preference for those aspects that relate directly to patient care. We have included "Clinical Correlates," which show examples of how the hearing sciences relate directly to clinical applications, for those who can use some motivation to master the scientific underpinnings.

ACOUSTICS AND INSTRUMENTATION

Introductory:	Chapters 1, 2, 3, 4, 5
Intermediate:	Chapters 6, 7
Advanced:	Chapter 8

SPEECH ACOUSTICS

Intermediate: Chapters 9, 10

ANATOMY AND PHYSIOLOGY

Introductory:	Chapters 11, 12, 13, 16, 18, 20
Intermediate:	Chapters 14, 15, 19, 21, 23, 24, 25
Advanced:	Chapters 17, 22, 26

PSYCHOACOUSTICS AND SPEECH PERCEPTION

Introductory:	Chapter 27
Intermediate:	Chapters 28, 30, 32, 33, 36, 37, 38
Advanced:	Chapters 29, 31, 34, 35, 39

Some chapters have "prerequisites." Understanding the material in these chapters requires that the reader be familiar with the material covered in earlier chapters. These are listed in the following chart.

Chapter	Prerequisite Chapters
1	None
2	None
3	1
4	1
5	1, 2, 3, 4
6	1
7	2, 4, 6
8	1, 2, 3, 6, 7
9	1, 2, 3, 4, 5
10	1, 2, 3, 4, 5, 9
11	None
12	11
13	1, 2, 3, 4, 5, 11, 12
14	1, 3, 11, 12, 13
15	1, 4, 12, 13, 14

16	1, 3, 11, 12, 13
17	6, 16
18	16
19	18
20	11, 16, 18
21	20
22	1, 3, 4, 7, 16, 17, 18, 19, 20, 21
23	16, 20
24	16
25	12, 16, 20, 24
26	24, 25
27	None
28	1, 11, 16, 18
29	27, 28
30	1, 2, 3, 11, 16, 18, 20, 27, 28
31	1, 2, 12, 13, 18, 30
32	1, 11, 16, 18, 30
33	1, 11, 16, 18, 21, 27
34	2, 23, 33
35	21, 33, 34
36	26, 30, 32
37	23, 27, 30, 33
38	1, 3, 30
39	1, 3, 9, 10, 12, 14, 16, 18, 20, 27,
	30, 31, 32, 33, 34, 35, 36, 37, 38

Reviewers

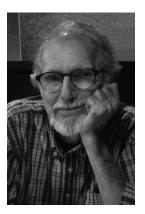
Plural Publishing, Inc. and the authors would like to thank the following reviewers for taking the time to provide their valuable feedback during the development process:

Darren Kurtzer, AuD,

Senior Clinician American Institute of Balance Largo, Florida Adjunct Assistant Professor A.T. Still University, Mesa, Arizona

Lisa Koch, AuD

Adjunct Associate Professor Department of Audiology, Arizona School of Health Sciences A.T. Still University Mesa, Arizona


Bre Lynn Myers, AuD, PhD

Assistant Professor Osborne College of Audiology Salus University Elkins Park, Pennsylvania

Taylor Unger, AuD

Audiologist Atlantic Hearing and Balance Port Orange, Florida

About the Authors

Lloyd L. Price, PhD, Professor Emeritus of Audiology, taught undergraduate and graduate student courses in the hearing sciences at Florida State University. His teaching career spanned 31 years and he worked clinically before teaching.

Teri A. Hamill, PhD, Professor Emeritus of Audiology at Nova Southeastern University, recently took early retirement. She had taught AuD students for 21 years at Nova Southeastern University, and taught at two other universities and was a hospital-based audiologist.

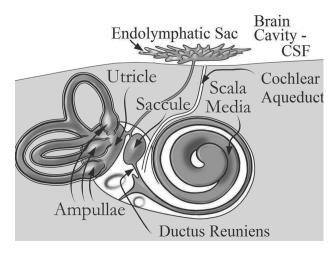
Dr. Hamill's knowledge of instrumentation was fur-

thered by having worked with engineers: Her postdoctorate in 1987 to 1988 was with Project Phoenix/ Nicolet, which produced a commercially unsuccessful fully digital hearing aid. Her knowledge of digital signal processing also comes from being married to a computer scientist.

Dr. Price is retired to Havana, Florida, with his wife, Cindy. They frequently travel, particularly to Europe. Dr. Hamill retired in order to sail at least half the year on her antique Shannon 38 cutterrigged sailboat, and to have more time to read about hair-cell physiology.

Introduction to Peripheral Vestibular Anatomy and Physiology

The history of audiology's involvement in vestibular testing dates back to the mid-1970s, when Barber and Stockwell published a text on how to evaluate the balance system. Since the vestibular system is part of the ear, and as Dr. Barber was an otoneurologist, it made sense that the testing of the balance system became part of the practice of audiology. The involvement of the field grew along with knowledge of the pathologies of the vestibular system, and the diagnostic tests for balance disorders have expanded. Most doctor of audiology programs have two or three courses in vestibular evaluation and management. This chapter and Chapters 25 and 26 provide background on the anatomy and physiology to prepare students for this coursework, and to provide the undergraduate student with an understanding of how humans maintain balance.


Most of us give little thought to our sense of balance. Having a normal balance system means more than not being dizzy. A healthy vestibular system allows moving without falling, knowing where our bodies are in space as we move, and it permits us to see a steady world as we move. Without our vestibular systems, when we move our view of the world would be similar to a video taken with one's cell phone—jumping, blurry images.

The balance systems comprise more than just the vestibular structures in the inner ear. The

vestibular sense organs are connected to brainstem structures that reflexively control the movement of the eyes. This permits unblurred vision as we turn our heads. Nerve fibers in the brainstem go to the cerebellum, to the neck, and to motor pathways, all of which control body motions and allow us to remain upright. This chapter introduces the peripheral vestibular system; Chapter 25 provides more detail, and Chapter 26 describes advanced vestibular concepts including how the central nervous system integrates information to help us make the eye movements that allow us to keep focused vision as we move our heads and bodies.

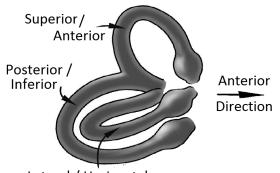
THE VESTIBULAR SYSTEM: BONY AND MEMBRANOUS LABYRINTHS

As was discussed in Chapter 16, the same fluids are in both the vestibular system and the cochlea. Perilymph is found between the bony walls of the vestibular system and the membranes; endolymph is within the membranes. A small stalk, **ductus reuniens, connects** the endolymph-filled **scala media of the cochlea to the saccule**, which is connected to the **utricle**. The utricle and saccule are portions of the membranous labyrinth that **sense when our bodies are moving**

Figure 24–1. The membranous labyrinth includes the scala media of the cochlea, the utricle and saccule in the vestibule, and membranous arcs within the semicircular canals. Perilymph is found outside the membranous labyrinth. There is a stalklike extension of both the endolymph-filled membranous labyrinth and the perilymph-filled scala tympani. The perilymph in the scala tympani connects via the cochlear aqueduct to a space in the cranium filled with cerebrospinal fluid (CSF). The membranous labyrinth connects to the endolymphatic duct, which connects to the endolymphatic sac, tucked into the dura mater covering the brain. Source: Modified from copyright © Miguel Reynel 2013, used with permission.

in a straight line (e.g., riding in a car, descending in an elevator) and when our heads are tilting. The semicircular canals contain the sense organs that detect rotation, such as the head pivoting on the neck. The three semicircular canals open into the utricle, as shown in Figure 24–1. Each of the semicircular canals has an enlargement, or ampulla, at one end. The sensory cells are in the ampullae. (*Ampulla* is singular, *ampullae* is the plural form.)

A tube, called the **cochlear aqueduct**, runs from the **perilymph-filled space** of the bony labyrinth **to the brain above**. It appears that the opening to the cerebrospinal fluid (CSF) space of the brain is not patent; CSF is not freely flowing. (The chemistry of CSF and perilymph are a bit different.) Perilymph is thought to be derived from "blood serum substrate," that is, the part of the blood other than the red and white blood cells. Endolymph in the cochlea is produced by stria vascularis; in the vestibular system, a type of cell within the ampulla, dark cells, are believed to produce and nourish the endolymph. There is also a connection, called the **endolymphatic duct, between the saccule and utricle and the endolymphatic sac**. The endolymphatic sac rests in the dura mater of the brain—the outside of the meninges, the covering of the cranium. The presence of these ducts to the brain hints at the inner ear's ability to regulate the pressure of the inner ear fluids. If the system were to create too much endolymph or perilymph, there would be some room for expansion. The endolymphatic sac could bulge a bit; the cochlear aqueduct might allow some pressure relief into the CSF-filled brain cavity.


Arrangement of the Semicircular Canals

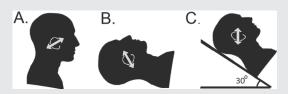
Each of the three semicircular canals of one ear is oriented at right angles to each other. This is easier to envision in the sketch of the circles superimposed on three of the sides of a cube, shown in Figure 24–2.

However, the actual arrangement of the semicircular canals is not as simple as sketched in Figure 24–2; it is more like that in Figure 24–3. The semicircular canals are named for their anatomic

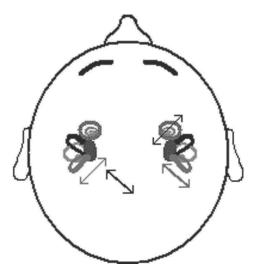
Figure 24–2. The three semicircular canals lie perpendicular to each other, just as three sides of a cube are perpendicular to each other.

Lateral / Horizontal

Figure 24–3. The semicircular canals are named by their anatomic arrangement. Each canal may be known by one of two names. Source: Modified from copyright © Miguel Reynel 2013, used with permission.


location. The horizontal or lateral semicircular canal is tilted about 30 degrees off horizontal. It is lower in the back than in the front (Figure 24–4A). The canal that is most anterior also is the highest one; thus, this canal is called either the **superior** or the **anterior semicircular canal**. The third canal is named either the **inferior** or the **posterior semicircular canal**.

Planes of the Canals of the Right and Left Ears Are Aligned


As shown in Figure 24–5, the right anterior and left posterior canals are both angled in the same orientation. The acronym RALP is commonly used to describe the two canals. The left anterior and right posterior canals also line up; this pair goes by LARP. Thus, movement of the head in one direction will cause stimulation in pairs of canals. That holds true for the horizontal canals, too. Moving the head as if shaking no causes the **pair of horizontal canals** (right and left) to be stimulated.

Clinical Correlate: Orienting the Horizontal Semicircular Canal

When testing people with dizziness using a test called videonystagmography or electronystagmography, there is a portion of the test that requires that the horizontal semicircular canal be positioned straight up and down. To do this, recline the patient into a supine position, and then elevate his or her head 30 degrees. This will place the semicircular canal in the desired direction (see Figure 24–4).

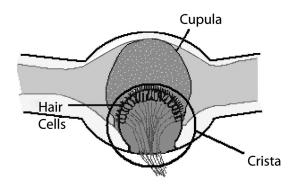
Figure 24–4. A. Orientation of the horizontal semicircular canal in the upright patient. **B.** When supine, the horizontal canal is not oriented vertically. **C.** Tilting the head up approximately 30 degrees aligns the horizontal canal straight up and down.

Figure 24–5. Orientation of the right anterior and left posterior (RALP) and left anterior and right posterior canals (LARP) are in line. Thus, these pairs of canals will be stimulated by the same directional head motion.

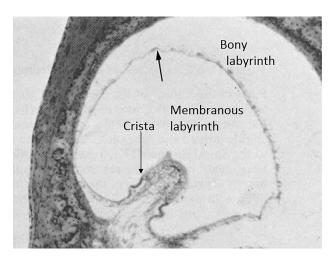
ANATOMY AND PHYSIOLOGY OF THE SEMICIRCULAR CANALS

Structures within the Ampullae of the Semicircular Canals

Recall that the cochlea has a membrane covering the hair cells (reticular lamina) and that the hair cells themselves are bathed in perilymph. The vestibular system's setup is similar. The movementsensing **vestibular hair cells are below a membrane barrier in perilymph**; the sensing cell **cilia** will **project into** the potassium-rich **endolymph**. Collectively, the **cells in the ampulla** are called the **crista** or **crista ampullaris**. You will sometimes read that the crista is made up of **sensory epithelium**.


The crista contains hair cells. Just like in the cochlea, there are two types of hair cells. They are not arranged in the same way, so the terms *outer* and *inner* would not be appropriate, as the two types of cells are mixed together in the same locations. We call them **type I** and **type II ves-tibular hair cells**. The **type I** cells are shaped somewhat like a vase with a pinched neck, similar in shape to the inner hair cells. This shape

is also called globular. The **type II hair cells are taller and straighter, like the** cochlea's **outer hair cells**. Both types of cells have cilia on them, and when deflected, the **cilia will open microchannels, allowing potassium into the cell, depolarizing the hair cells**.


In the cochlea, the cilia of the outer hair cells project into the gelatinous tectorial membrane. In the ampulla of the semicircular canals, the type I and II hair cell **cilia project into a gelatinous mass called the cupula**. The cupula hangs from the top of the ampulla, as illustrated in Figure 24–6.

The cupula is essentially floating in endolymph, although it is attached to the roof of the ampulla. This means that it can move somewhat when the fluid moves. An analogy for this situation is the twisting of a Hula-Hoop. When the Hula-Hoop spins, the pebbles inside lag behind because of their inertia. If viewed from a camera mounted inside the Hula-Hoop, the pebbles would appear to be moving backward. Rotating the head moves the semicircular canals, which are firmly attached to the head, which causes the cupulas to lag behind.

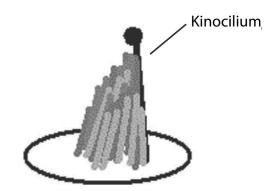
The cupula can move only so far: It will hit the walls of the ampulla if the movement continues, for example, if you are on a merry-go-round. As you spin and spin on the merry-go-round (at a constant speed), the fluid eventually is going to catch up to the speed of the body and the cupula will float in a relatively neutral position again. When you slow down, the fluid will still be

Figure 24–6. Arrangement of structures within the ampulla. The hair cells are in the crista and are not within the membranous labyrinth, although the hair cell cilia project into it. The cupula is a gelatinous structure into which the cilia embed.

Figure 24–7. Scanning microscope view of a cross section of an ampulla. Source: Modified from Jozeppy26, https://commons.wikimedia.org/w/index.php?curid=10253283.

moving as the body decelerates, and the cupula would be forced in the opposite direction.

Figure 24–7 shows an electron microscope cross-section view of an ampulla. The cupula is not shown in this figure. It provides a nice illustration of the bony versus membranous labyrinths, and how the hair cell bodies in the ampulla are surrounded by perilymph. The cilia (not visible in this picture) project into the membranous labyrinth.


Angular Head Motion Directions

The semicircular canals are arranged to detect angular motion in any direction. Sometimes these motion directions are referred to as yaw, pitch, and roll. Yawing is moving around a vertical axis. Shaking your head no is an example of this motion. A boat at anchor in a shifting wind yaws back and forth. The horizontal semicircular canals would be stimulated with this type of movement. A boat crashing through the waves has its bow (front) tossed upward and downward; it is said to be pitching. Shaking your head yes creates the same sort of movement. Looking at Figure 24–5, note that both the anterior and posterior canals would be partially stimulated by this type of motion. Rolling is when a boat tips left to right, as when a wake from a passing boat hits the side of the boat. Repeatedly tilt your head toward your shoulder—left ear down to the left shoulder, then right ear down to the right shoulder. Again, the anterior and posterior canals sense this motion.

Cilia and Kinocilium in the Ampullae

The cilia on a vestibular hair cell look a bit different from those on an auditory hair cell. First, a kinocilium—a very tall cilium—exists on vestibular hair cells (both type I and type II). Second, the cilia are not neatly in rows—they form a central mound. The tallest stereocilia are nearest the kinocilium (Figure 24–8).

Just as with auditory hair cells, the adjacent cilia are linked together. **Deflecting the tallest cilia** therefore **moves the entire bundle**. And again, as in the auditory system, the **movement of the cilia will open and close** channels in the cilia. Moving the stereocilia in one direction (toward the kinocilium) will open the **mechanoelectrical transduction (MET) channels**, allowing potassium to enter the cell and excite it. Movement in the opposite direction closes the channel and slows the neural firing rate. (Vestibular nerve cells, like auditory ones, will fire spontaneously without stimulation.)

Figure 24–8. Illustration of the cilia on top of a vestibular hair cell. Hair cells in the vestibular system have a tall kinocilium. The cilia are clustered together and linked together, so that movement on any one part moves the entire bundle.